
Security Approaches for Microservice Architectures

-Kameshwara Rao Marthy

What are Microservices
Small Autonomous services that work together, modelled around a business
domain

Microservices, are fine-grained, single-function component services that can be
scaled and deployed independently, enabling organizations to update or add new
features to an application without necessarily affecting the rest of the application’s
functionality.

Advantages of Microservices
Micro service architectures are becoming extremely important for organizations as
they give agility, scalability, flexibility with engineering approach and architectural
style of computing in building software.
Smart architectures to Auto-scale the individual components to meet increased
demand. When the event is over, sense the drop in traffic, and scale back
accordingly. The app is available the entire time, leaving no gap in user experience.
Huge break through as customers expect uninterrupted, seamless digital
experiences.

• Wait!! it has so many advantages ? But what are the Hardships??

Design for visibility to make inspection and debugging easier.

― Basics of the Unix Philosophy

http://www.faqs.org/docs/artu/ch01s06.html

Why security matters?

Microservice Adoption Challenges – Security stands THIRD

• Security is frequently mentioned as the top concern for moving to
Microservice architectures.

• Enterprises need to be confident that their data is secure in these
architectures.

• Surveys conducted by Forrester Research, the Cloud Native
Computing Foundation, and 451 Research revealed that 35-45%
of participants reported security as a primary concern regarding
running Microservices architectures in production environments

http://i.dell.com/sites/doccontent/business/solutions/whitepapers/en/Documents/Containers_Real_Adoption_2017_Dell_EMC_Forrester_Paper.pdf
https://www.cncf.io/blog/2017/06/28/survey-shows-kubernetes-leading-orchestration-platform/
https://resources.coreos.com/analyst-reports/hybrid-cloud-drives-growing-container-production-use-and-disruption-451-research-report

Difference in Security requirements for Monoliths and Micro
services ?
Monoliths have defined boundaries around which we can build our
security perimeters

But with Microservices the
o attack surface is Broader
omore processes
oMore intercommunication calls
oMore Networking requirements.

So how can we secure our Microservices??

Prevention
• Prevention is better than cure. Applies every where!!
• Some times take a step back and think rationally
• Focus more on Securing stuff should be higher priority than

investing on monitoring.
• Security aspect should be discussed right from day 1 of the

project and not at the end.
• We can’t prevent the attacks but we can significantly reduce the

number of attacks if we can Increase the cost of invoking one to
hack or break the safe.

Threat Modelling
Process by which potential threats, such as vulnerabilities can
be identified, enumerated, and prioritized – all from a
hypothetical attacker’s point of view.

Threat Modelling - STRIDE
STRIDE is a model of threats developed by Praerit Garg and Loren Kohnfelder at
Microsoft for identifying security threats. It provides a mnemonic for security threats
in six categories. They are:
• Spoofing of user identity
• Tampering
• Repudiation
• Information disclosure (privacy breach or data leak)
• Denial of service (D.o.S)
• Elevation of privilege

https://en.wikipedia.org/wiki/STRIDE_(security)

https://en.wikipedia.org/wiki/Spoofing_attack
https://en.wikipedia.org/wiki/Tampering_(crime)
https://en.wikipedia.org/wiki/Non-repudiation
https://en.wikipedia.org/wiki/Data_privacy
https://en.wikipedia.org/wiki/Data_leak
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Privilege_escalation

HTTPS:

• Always use for Data in Transit
• Server guarantees!
• Payload not manipulated...

Authentication & Authorization

In microservices, since we don’t generally have centralized user
management at every level, its better to adopt to industry
standards such as

• Oauth2
• Open Id Connect

Implicit trust: Confused Deputy

Confused Deputy problem
A user who has access to the system can begin forging different requests with
different identifiers compared to their original assigned identities and roles used
when initially signing into the system. This confuses the service into thinking
they are someone else or have a different list of roles than what was originally
granted during the sign on.

In another scenario, the user originally has access and roles but it is later
restricted or revoked from the system. Different data cache mechanisms or
leaked keys (such as automated backups) are still able to obtain access to the
server side resources.

Data at Rest?

Database encryption

In Monoliths, if we want to safe guard the data at rest, we used to encrypt the
DB tables.

But With microservices, the data is decomposed into different parts and stored
at different places.

Eg: user service, payment service and catalog service for a single web
application..

Database encryption

we can choose which ones are important to be encrypted and which ones can
be left in plain text.. Cost factor is associated..

Also the decryption key has to stored some where. Most of times we end up
having the decryption key on the same server. Not a good practice.

Ø

Managing Credentials and Secrets:

Consul, Mysql, etcd —> all store things in plain text

Auth with DB/KV store is still an issue..

Auditing and revoking is not present in all the tools.

Using Configuration management systems to store
credentials

Chef, Ansible and puppet -> Offers vault solution to store passwords and other
secrets.

Problems:
Centralized storage
No API’s
Convergence time when there are updates and changes
Auditing and revoking not up to the mark

Probably better than having nothing.

Never keep sensitive data in Code Repositories

Not a good practice to store credentials in GIT.

Can use a tool like Git Rob.

Gitrob is a tool to help find potentially sensitive files pushed to public
repositories on Github. Gitrob will clone repositories belonging to a user or
organization down to a configurable depth and iterate through the commit
history and flag files that match signatures for potentially sensitive files. The
findings will be presented through a web interface for easy browsing and
analysis.

Using AWS KMS
Full lifecycle management of keys available.

If in AWS, better to use AWS KMS to manage & monitor all the keys getting used
in the infrastructure. We can have policies around the key mgmt solution.

Hashicorp Vault

Advantages:

Transit backed. -- Encryption
Time limited tokens
sealed / unsealed state
HTTP API — programmatic access
Dynamic key generation – Generate keys on the fly

Patching

https://betanews.com/2016/01/12/data-breaches-and-cyber-attacks-are-often-caused-by-
failing-to-patch-known-vulnerabilities/

The Three R’s of Enterprise Security: Rotate, Repave,
and Repair

Rotate - Short lived credentials!
Repair - patch your stuff regularly!
Repave - burn the stuff down!

https://builttoadapt.io/the-three-r-s-of-enterprise-security-rotate-repave-and-repair-
f64f6d6ba29d

Detection

Continuously detect and protect against attacks, anytime, anywhere.

Log Aggregation

For Enterprises – May be DataDog; For Open Source -May be some thing like
ELK stack.

Polyglot architecture
More stuff to track

Polyglot architecture

Advantage - one vulnerability cannot break the entire system.

Different languages used to write different services in micro service platforms.
More things to control and more things to be possibly broken

Use tools Snyk.io or like npm check to check for outdated, incorrect, and
unused dependencies.

DON’T WAIT FOR A DISASTER TO DRAFT AN ACTION PLAN!!!!

Pwned - https://haveibeenpwned.com
• Takes email address and tell if your email address is part of any

data breaches.
• Very useful as most of us tend to have same passwords for the

email address we use for different accounts.

• When you are trying to recover post an attack, its always better to
Repave (Burn every thing down!!) .

• Chances of trails of virus/trojans, affected libraries and leftovers
in your systems. So its better to start building from scratch.

• Cost of rebuild is very high!! Particularly if things are not
automated completely.

Automate your infrastructure completely.

Use tools like Chef, Puppet, Ansible, Cloud formation, Terraform etc
etc.. You can easily repeat the build process and have audits.

Backups

The condition of any backup is unknown until a restore has been
attempted.

Docker Security

https://banyanops.com/blog/analyzing-docker-hub/

Layered base scanning

Docker Bench for Security

• The Docker Bench for Security is a script that checks for dozens of common best-
practices around deploying Docker containers in production.

• The tests are all automated, and are inspired by the CIS Docker Community Edition
Benchmark v1.1.0. We are releasing this as a follow-up to our Understanding Docker
Security and Best Practices blog post.

• We are making this available as an open-source utility so the Docker community can
have an easy way to self-assess their hosts and docker containers against this
benchmark.

https://github.com/docker/docker-bench-security

https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_Community_Edition_Benchmark_v1.1.0.pdf
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/

OWASP Zed Attack Proxy (ZAP)

Open Web Application Security Project (OWASP)

The OWASP Zed Attack Proxy (ZAP) is an easy to use integrated
penetration testing tool for finding vulnerabilities in web
applications.

Security Paradigms

• Defense in Depth

Security Paradigms

• Least Privilege:
The generic goal of administrators is to hand out

the least amount of privileges. The goal of attackers is to
gain as much privileges needed to gain access to sensitive
information.

https://en.wikipedia.org/wiki/Principle_of_least_privilege

Thank you!

