
SCALABLE MONITORING
WITH APACHE SPARK
Diane Feddema, Principal Software Engineer, CTO Office
Zak Hassan, Senior Software Engineer, CTO Office

YOUR SPEAKERS
DIANE FEDDEMA
PRINCIPAL SOFTWARE ENGINEER - AI/ML CENTER OF EXCELLENCE, CTO OFFICE

● Currently focused on developing and applying Data Science and Machine Learning techniques for
performance analysis, automating these analyses and displaying data in novel ways.

● Previously worked as a performance engineer at the National Center for Atmospheric Research, NCAR,
working on optimizations and tuning in parallel global climate models.

ZAK HASSAN
SENIOR SOFTWARE ENGINEER - AI/ML CENTER OF EXCELLENCE, CTO OFFICE

● Currently focused on developing analytics platform on OpenShift and leveraging Open Source ML
Frameworks: Apache Spark, Tensorflow and more. Designing high performance and scalable ML
platform that exposes metrics through cloud-native technology, Prometheus and Kubernetes.

OVERVIEW
OBSERVABILITY

● Motivation
● Integrating:

○ Apache Spark with radanalytics.io
○ Prometheus
○ Kubernetes
○ Grafana

● Spark Cluster JVM Instrumentation

PERFORMANCE TUNING

● Tuning Spark jobs
● Spark Memory Model
● Prometheus as a performance tool
● Comparing cached vs non-cached dataframes
● Demo

MOTIVATION

● Rapid experimentation with data science apps
● Identify bottlenecks
● Improve performance
● Resolve incidents more quickly
● Improving memory usage to tune spark jobs

OUR STORY

● Instrumented spark jvm to expose metrics in an OpenShift pod.
● Added ability to monitor spark with prometheus
● Experimented with using Grafana with Prometheus to provide more insight
● Sharing our experiments and experience with using this to do performance

analysis of spark jobs.
● Demo at the very end

June 1, 2017 - https://github.com/radanalyticsio/openshift-spark/pull/28

- Added agent to report jolokia metrics endpoint in openshift pod

Nov 7, 2017 - https://github.com/radanalyticsio/openshift-spark/pull/35

- Added agent to report prometheus metrics endpoint in openshift pod

https://github.com/radanalyticsio/openshift-spark/pull/28
https://github.com/radanalyticsio/openshift-spark/pull/35

SPARK APPLICATION

WHAT IS PROMETHEUS

● Open source monitoring
● in 2016 prometheus become the 2nd member of the CNCF
● scrapes metrics from a endpoint.
● Client libraries in Go, Java, Python, etc.
● Openshift comes instrumented out of the box with prometheus endpoints.
● If you don’t have native integration with prometheus there are lots of

community exporters that allow lots of things to expose metrics in your
infrastructure to get monitored.

WHAT IS APACHE SPARK

Apache Spark is an in-demand data processing engine with a thriving
community and steadily growing install base

● Supports interactive data exploration in addition to apps
● Batch and stream processing
● Machine learning libraries
● Distributed
● Separate storage and compute (in memory processing)
● new external scheduler kubernetes

SPARK FEATURES

• Can run standalone, with yarn, mesos or Kubernetes as the cluster
manager

• Has language bindings for Java, Scala, Python, and R
• Access data from JDBC, HDFS, S3 or regular filesystem
• Can persist data in different data formats: parquet, avro, json, csv, etc.

SQL MLlib Graph Streaming

SPARK CORE

SPARK IN CONTAINERS

SPARK CLUSTER INSTRUMENT

SPARK MASTER

JAVA AGENT

SPARK WORKER

JAVA AGENT

SPARK WORKER

JAVA AGENT

PROMETHEUS

ALERT MANAGER

Notify alertmanager

Scrapes metrics

INSTRUMENT JAVA AGENT

PROMETHEUS TARGETS

PULL METRICS

● Prometheus lets you configure how often to scrape and which endpoints
to scrap. The prometheus server will pull in the metrics that are
configured.

ALERTMANAGER

• PromQL query is used to create rules to notify you if the rule is triggered.
• Currently alertmanager will receive the notification and is able to notify you

via email, slack or other options (see docs for details) .

PROMQL

● Powerful query language to get metrics on kubernetes cluster along with
spark clusters.

● What are gauges and counters?

Gauges: Latest value of metric
Counters: Total number of event occurrences. Might be suffix “*total”.

You can use this format to get the last minute prom_metric_total[1m]

Tuning Spark jobs with Prometheus
Things we would like to know when tuning Spark programs:

● How much memory is the driver using?
● How much memory are the workers using?
● How is the JVM begin utilized by spark?
● Is my spark job saturating the network?
● What is the cluster view of network, cpu and memory utilization?

We will demonstrate how Prometheus coupled with Grafana on Kubernetes
can help answer these types of questions. Visit our blog
“How to Gather and Display Metrics in Red Hat Openshift”

https://red.ht/2CZAAhN

https://red.ht/2CZAAhN

Our Example Application

Focus on Memory:
Efficient Memory use is Key to good performance in Spark jobs.
How:
We will create Prometheus + Grafana dashboards to evaluate
memory usage under different conditions?
Example:
Our Spark Python example will compare memory usage with and
without caching to illustrate how memory usage and timing
change for a PySpark program performing a cartesian product
followed by a groupby operation

A little Background

Memory allocation in Spark
● Spark is an "in-memory" computing framework
● Memory is a limited resource!
● There is competition for memory
● Caching reusable results can save overall memory usage

under certain conditions
● Memory runs out in many large jobs forcing spills to disk

Spark Unified Memory Model
LRU eviction and user defined memory configuration options

B
lo

ck

B
lo

ck

Total JVM Heap Memory allocated to SPARK JOB

Memory allocated to
EXECUTION

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

Memory allocated to
STORAGE

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

Spill to
disk

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck ? B
lo

ck ?

Spark.memory.storageFractionSpill to
disk

EXECUTION takes precedence over
STORAGE up to user defined

unevictable amount

B
lo

ck ? B
lo

ck ? Spill to
disk

B
lo

ck

Using Spark SQL and Spark RDD
API together in a tuning exercise

We want to use Spark SQL to manipulate dataframes
Spark SQL is a component of Spark

● it provides structured data processing
● it is implemented as a library on top of Spark

APIs:
● SQL syntax
● Dataframes
● Datasets

Backend components:
● Catalyst - query optimizer
● Tungsten - off-heap memory management eliminates overhead of Java Objects

Performance Optimizations with Spark SQL
JDBC Console User Programs

(Python, Scala, Java)

SPARK SQL
Catalyst Optimizer Dataframe API

Spark Core

Spark SQL performance benefits:
● Catalyst compiles Spark SQL programs down to an RDD
● Tungsten provides more efficient data storage compared

 to Java objects on the heap
● Dataframe API and RDD API can be intermixed

RDDs

Using Prometheus + Grafana for
performance optimization

Specific code example:
Compare non-cached and cached dataframes that are reused in a
groupBy transformation

When is good idea to use cache in a dataframe?
● when a result of a computation is going to be reused later
● when it is costly to recompute that result
● in cases where algorithms make several passes over the data

Determining memory consumption for dataframes you
want to cache

Example: Code for non-cached run

rdd1 = RandomRDDs.normalVectorRDD(spark, nRow, nCol, numPartitions, seed)
seed = 3
rdd2 = RandomRDDs.normalVectorRDD(spark, nRow, nCol, numPartitions, seed)
sc = spark.sparkContext
convert each tuple in the rdd to a row
randomNumberRdd1 = rdd1.map(lambda x: Row(A=float(x[0]), B=float(x[1]), C=float(x[2]), D=float(x[3])))
randomNumberRdd2 = rdd2.map(lambda x: Row(E=float(x[0]), F=float(x[1]), G=float(x[2]), H=float(x[3])))
create dataframe from rdd
schemaRandomNumberDF1 = spark.createDataFrame(randomNumberRdd1)
schemaRandomNumberDF2 = spark.createDataFrame(randomNumberRdd2)
cross_df = schemaRandomNumberDF1.crossJoin(schemaRandomNumberDF2)
aggregate
results = schemaRandomNumberDF1.groupBy("A").agg(func.max("B"),func.sum("C"))
results.show(n=100)
print "----------Count in cross-join--------------- {0}".format(cross_df.count())

Example: Code for cached run
rdd1 = RandomRDDs.normalVectorRDD(spark, nRow, nCol, numPartitions, seed)
seed = 3
rdd2 = RandomRDDs.normalVectorRDD(spark, nRow, nCol, numPartitions, seed)
sc = spark.sparkContext
convert each tuple in the rdd to a row
randomNumberRdd1 = rdd1.map(lambda x: Row(A=float(x[0]), B=float(x[1]), C=float(x[2]), D=float(x[3])))
randomNumberRdd2 = rdd2.map(lambda x: Row(E=float(x[0]), F=float(x[1]), G=float(x[2]), H=float(x[3])))
create dataframe from rdd
schemaRandomNumberDF1 = spark.createDataFrame(randomNumberRdd1)
schemaRandomNumberDF2 = spark.createDataFrame(randomNumberRdd2)
cache the dataframe
schemaRandomNumberDF1.cache()
schemaRandomNumberDF2.cache()
cross_df = schemaRandomNumberDF1.crossJoin(schemaRandomNumberDF2)
aggregate
results = schemaRandomNumberDF1.groupBy("A").agg(func.max("B"),func.sum("C"))
results.show(n=100)
print "----------Count in cross-join--------------- {0}".format(cross_df.count())

Query plan comparison
Non-Cached Cached

Example: Comparing cached vs non-cached runs

Prometheus dashboard: non-cached Prometheus dashboard: cached

Prometheus dashboard: non-cached Prometheus dashboard: cached

Example: Comparing cached vs non-cached runs

Comparing non-cached vs cached runs

RIP = 0.76
% Change = 76

RIP (Relative Index of Performance)

RIP: 0 to 1 = Improvement

 0 to -1 = Degradation

% Change: negative values = Improvement

RIP = 0.63
% Change = 63

RIP = 0.62
% Change = 62

RIP = 0.63
% Change = 63

RIP = 0.10
% Change = 10

RIP = 0.00
% Change = 0

SPARK JOB + PROMETHEUS +
GRAFANA

DEMO

Demo Time!

Recap
You learned:

■ About our story on spark cluster metrics monitoring with prometheus
■ Spark Features
■ How prometheus can be integrated with apache spark
■ Spark Applications and how memory works
■ Spark Cluster JVM Instrumentation
■ How do I deploy a spark job and monitor it via grafana dashboard
■ Performance difference between cache vs non-cached dataframes
■ Monitoring tips and tricks

Thank You!

Questions?

Where To Find Us?
Try this at home: https://red.ht/2CZAAhN

Zak Hassan
Twitter: @Propect1010
Diane Feddema
Twitter: @DianeFeddema

https://red.ht/2CZAAhN

