
Productionizing 
Machine Learning
Pipelines with PFA
Nick Pentreath
Principal Engineer

@MLnick

About

@MLnick on Twitter & Github

Principal Engineer, IBM

CODAIT - Center for Open-Source Data &
AI Technologies

Machine Learning & AI

Apache Spark committer & PMC

Author of Machine Learning with Spark

Various conferences & meetups

Center for Open Source Data and AI Technologies

CODAIT
codait.org

CODAIT aims to make AI solutions
dramatically easier to create, deploy,
and manage in the enterprise

Relaunch of the Spark Technology
Center (STC) to reflect expanded
mission

Improving Enterprise AI Lifecycle in Open Source

http://codait.org/

The Machine Learning
Workflow

Perception

In reality the workflow spans teams …

… and tools …

… and is a small (but critical!) piece of the puzzle

*Source: Hidden Technical Debt in Machine Learning Systems

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Machine Learning
Deployment

What, Where, How?

• What are you deploying?
• What is a “model”?

• Where are you deploying?
• Target environment

• Batch, streaming, real-time?

• How are you deploying?
• “devops” deployment mechanism

• Serving framework

We will talk mostly about the what

What is a “model”?

Pipelines, not Models

• Deploying just the model part of the
workflow is not enough

• Entire pipeline must be deployed
• Data transform

• Feature extraction & pre-processing

• ML model itself

• Prediction transformation

• Technically even ETL is part of the
pipeline!

• Pipelines in frameworks
• scikit-learn

• Spark ML pipelines

• TensorFlow Transform

• pipeliner (R)

Challenges

• Proliferation of formats

• Open source, open standard: PMML, PFA, ONNX

• Open-source, non-standard: MLeap, Spark,
TensorFlow, Keras, PyTorch, Caffe, …

• Proprietary formats: lock-in, not portable

• Lack of standardization leads to custom
solutions

• Where standards exist, limitations lead to
custom extensions, eliminating the benefits

• Need to manage and bridge many different:
• Languages - Python, R, Notebooks, Scala / Java / C

• Frameworks – too many to count!

• Dependencies

• Versions

• Performance characteristics can be highly
variable across these dimensions

• Friction between teams

• Data scientists & researchers – latest & greatest

• Production – stability, control, minimize changes,
performance

• Business – metrics, business impact, product must always
work!

Spark solves many problems …

… but introduces additional challenges

• Currently, in order to use trained models
outside of Spark, users must:

• Write custom readers for Spark’s native format; or

• Create their own custom format; or

• Export to a standard format (limited support =>
custom solution)

• Scoring outside of Spark also requires custom
translation layer between Spark and another
ML library

Everything is custom!

• Tight coupling to Spark runtime

• Introduces complex dependencies

• Managing version & compatibility issues

• Scoring models in Spark is slow

• Overhead of DataFrames, especially query planning

• Overhead of task scheduling, even locally

• Optimized for batch scoring (includes streaming
“micro-batch” settings)

• Spark is not suitable for real-time scoring (<
few 100ms latency)

Containers for ML
Deployment

 16

Containers for ML Deployment

• But …

• What goes in the container is most
important

• Performance can be highly variable across
language, framework, version

• Requires devops knowledge, CI /
deployment pipelines, good practices

• Does not solve the issue of standardization

• Formats

• APIs exposed

• A serving framework is still required on top

• Container-based deployment has
significant benefits

• Repeatability

• Ease of configuration

• Separation of concerns – focus on what, not
how

• Allow data scientists & researchers to use
their language / framework of choice

• Container frameworks take care of (certain)
monitoring, fault tolerance, HA, etc.

The Portable Format for
Analytics

Overview

• PFA is being championed by the Data Mining
Group (IBM is a founding member)

• DMG previously created PMML (Predictive
Model Markup Language), arguably the only
viable open standard currently

• PMML has many limitations

• PFA was created specifically to address these
shortcomings

• PFA consists of:

• JSON serialization format

• AVRO schemas for data types

• Encodes functions (actions) that are applied to inputs
to create outputs with a set of built-in functions and
language constructs (e.g. control-flow, conditionals)

• Essentially a mini functional math language + schema
specification

• Type and function system means PFA can be
fully & statically verified on load and run by
any compliant execution engine

• => portability across languages, frameworks,
run times and versions

A Simple Example

• Specify the action to perform (typically on
input)

• Example – multi-class logistic regression

• Specify input and output types using Avro
schemas

Managing State

• Data storage specified by cells
• A cell is a named value acting as a global variable

• Typically used to store state (such as model
coefficients, vocabulary mappings, etc)

• Types specified with Avro schemas

• Cell values are mutable within an action, but
immutable between action executions of a given PFA
document

• Persistent storage specified by pools
• Closer in concept to a database

• Pools values are mutable across action executions

Other Features

• Special forms
• Control structure – conditionals & loops

• Creating and manipulating local variables

• User-defined functions including lambdas

• Casts

• Null checks

• (Very) basic try-catch, user-defined errors and logs
• Comprehensive built-in function library
• Math, strings, arrays, maps, stats, linear algebra

• Built-in support for some common models - decision
tree, clustering, linear models

Current Status

• Major missing features / limitations

• No built-in support for mixed dense/sparse vectors

• No built-in support for generic tensors

• No built-in functions for typical Deep Learning models
(e.g. CNN, RNN)

• No support / awareness of GPU

• Open questions

• Industry usage and adoption

• Performance and scalability

• Reference implementations

• Hadrian project by Open Data Group

• Covers PFA export / DSL in Python, R

• Covers scoring for PFA in JVM, Python, R

• What does PFA do well?

• Type system

• Flexibility & composability – functional approach

• User-defined functions

• Control flow

• Strong support for traditional ML operations

Aardpfark

• PFA export for Spark ML pipelines

• aardpfark-core: Scala DSL for creating PFA
documents

• avro4s to generate schemas from case classes;
json4s to serialize PFA document to JSON

• aardpfark-sparkml: uses DSL to export Spark ML
components and pipelines to PFA

Aardpfark - Challenges

• Spark ML Model has no schema knowledge

• E.g. Binarizer can operate on numeric or vector columns

• Need to use Avro union types for standalone PFA components
and handle all cases in the action logic

• Combining components into a pipeline

• Trying to match Spark’s DataFrame-based input/output
behavior (typically appending columns)

• Each component is wrapped as a user-defined function in the
PFA document

• Current approach mimics passing a Row (i.e. Avro record) from
function to function, adding fields

• Missing features in PFA

• Generic vector support (mixed dense/sparse)

Aardpfark is open-source!

• Coverage

• Almost all predictors (ML models)

• Many feature transformers

• Pipeline support (still needs work)

• Equivalence tests Spark <-> PFA

• Tests for core Scala DSL

• Need your help!

• Finish implementing components

• Improve pipeline support

• Complete Scala DSL for PFA

• Python support

• Tests, docs, testing it out!

https://github.com/CODAIT/aardpfark

https://github.com/salesforce/TransmogrifAI/tree/master/local

https://github.com/CODAIT/aardpfark
https://github.com/salesforce/TransmogrifAI/tree/master/local

Related Open Standards

PMML

• Shortcomings

• Cannot represent arbitrary programs / analytic
applications

• Flexibility comes from custom plugins => lose
benefits of standardization

• Data Mining Group (DMG)

• Model interchange format in XML with
operators

• Widely used and supported; open standard

• Spark support lacking natively but 3rd party
projects available: jpmml-sparkml
• Comprehensive support for Spark ML components

(perhaps surprisingly!)

• Watch SPARK-11237

• Other exporters include scikit-learn, R,
XGBoost and LightGBM

https://github.com/jpmml/jpmml-sparkml
https://issues.apache.org/jira/browse/SPARK-11237
https://github.com/jpmml/sklearn2pmml
https://github.com/jpmml/sklearn2pmml
https://github.com/jpmml/r2pmml
https://github.com/jpmml/jpmml-xgboost
https://github.com/jpmml/jpmml-lightgbm

MLeap

• Shortcomings

• “Open” format, but not a “standard”

• No concept of well-defined operators / functions

• Effectively forces a tight coupling between
versions of model producer / consumer

• Must implement custom components in Scala

• Impossible to statically verify serialized model

• Created by Combust.ML, a startup focused on
ML model serving

• Model interchange format in JSON / Protobuf

• Components implemented in Scala code

• Good performance

• Initially focused on Spark ML. Offers almost
complete support for Spark ML components

• Recently added some sklearn; working on
TensorFlow

Open Neural Network Exchange (ONNX)

• Shortcomings

• No or poor support for more “traditional” ML or
language constructs (currently)

• Tree-based models & ensembles

• String / categorical processing

• Control flow

• Intermediate variables

• Championed by Facebook & Microsoft

• Protobuf serialization format

• Describes computation graph (including
operators)

• In this way the serialized graph is “self-describing”
similarly to PFA

• More focused on Deep Learning / tensor
operations

• Will be baked into PyTorch 1.0.0 / Caffe2 as
the serialization & interchange format

Neural Network Exchange Format (NNEF)

• Shortcomings

• No or poor support for more “traditional” ML or
language constructs (currently)

• Tree-based models & ensembles

• String / categorical processing

• Control flow

• Intermediate variables

• Championed by Khronos Group

• Dual format

• Network structure file: describes computation graph &
operators

• Network data file: binary format for parameters

• More focused on Deep Learning / tensor
operations

• Supports compound operators (user-defined
functions)

Performance

Scoring Performance Comparison

• Comparing scoring performance of PFA with
Spark and MLeap

• PFA uses Hadrian reference implementation
for JVM

• Test dataset of ~80,000 records

• String indexing of 47 categorical columns

• Vector assembling the 47 categorical indices together
with 27 numerical columns

• Linear regression predictor

• Note: Spark time is 1.9s / record (1901ms) -
not shown on the chart

Wrapping Up

Summary

• However there are risks
• PFA is still young and needs to gain adoption

• Performance in production, at scale, is relatively
untested

• Tests indicate PFA reference engines need some work
on robustness and performance

• What about Deep Learning (e.g. ONNX)?

• Limitations of PFA

• A standard can move slowly in terms of new features,
fixes and enhancements

• PFA provides an open standard for
serialization and deployment of analytic
workflows
• True portability across languages, frameworks,

runtimes and versions

• Execution environment is independent of the producer

• Solves a significant pain point for the
deployment of ML pipelines and benefits the
wider ML ecosystem
• e.g. many currently use PMML for exporting models

from R, scikit-learn, XGBoost, LightGBM, etc.

Future directions

• PFA for Deep Learning?

• Comparing to ONNX and other emerging standards

• Better suited for the more general pre-processing
steps of DL pipelines

• Requires supporting DL-specific operators

• Requires standardized tensor schema and support for
tensors in PFA function library

• GPU support

• Extend our work in Aardpfark

• Initial focus on Spark ML

• Later add support for scikit-learn pipelines,
XGBoost, LightGBM, etc

• Performance testing & improvements

• Propose improvements to PFA

• Generic vector / tensor support

• Less cumbersome schema definitions

• Performance improvements to scoring engine

 37

Thank you!

codait.org

twitter.com/MLnick

github.com/MLnick

developer.ibm.com

http://ibm.biz/model-exchange

http://ibm.biz/max-developers

FfDL

Sign up for IBM Cloud and try Watson Studio!

https://ibm.biz/BdYVQS

MAX

http://ibm.biz/model-exchange
http://ibm.biz/max-developers
https://ibm.biz/BdYVQS

Links & References

Portable Format for Analytics

PMML

Spark MLlib – Saving and Loading
Pipelines

Hadrian – Reference Implementation of
PFA Engines for JVM, Python, R

jpmml-sparkml

MLeap

Open Neural Network Exchange

http://dmg.org/pfa/index.html
http://dmg.org/pmml/v4-3/GeneralStructure.html
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/jpmml/jpmml-sparkml
https://github.com/onnx/onnx

 39

