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The Machine Learning 
Workflow



Perception



In reality the workflow spans teams …



… and tools …



… and is a small (but critical!) piece of the puzzle

*Source: Hidden Technical Debt in Machine Learning Systems

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


Machine Learning 
Deployment



What, Where, How?

• What are you deploying? 
• What is a “model”? 

• Where are you deploying? 
• Target environment 

• Batch, streaming, real-time? 

• How are you deploying? 
• “devops” deployment mechanism 

• Serving framework

We will talk mostly about the what



What is a “model”?



Pipelines, not Models

• Deploying just the model part of the 
workflow is not enough 

• Entire pipeline must be deployed 
• Data transform 

• Feature extraction & pre-processing 

• ML model itself 

• Prediction transformation 

• Technically even ETL is part of the 
pipeline!

• Pipelines in frameworks 
• scikit-learn 

• Spark ML pipelines 

• TensorFlow Transform 

• pipeliner (R)



Challenges

• Proliferation of formats 

• Open source, open standard: PMML, PFA, ONNX 

• Open-source, non-standard: MLeap, Spark, 
TensorFlow, Keras, PyTorch, Caffe, … 

• Proprietary formats: lock-in, not portable 

• Lack of standardization leads to custom 
solutions 

• Where standards exist, limitations lead to 
custom extensions, eliminating the benefits

• Need to manage and bridge many different: 
• Languages - Python, R, Notebooks, Scala / Java / C  

• Frameworks – too many to count! 

• Dependencies 

• Versions 

• Performance characteristics can be highly 
variable across these dimensions 

• Friction between teams 

• Data scientists & researchers – latest & greatest 

• Production – stability, control, minimize changes, 
performance 

• Business – metrics, business impact, product must always 
work!



Spark solves many problems …



… but introduces additional challenges

• Currently, in order to use trained models 
outside of Spark, users must: 

• Write custom readers for Spark’s native format; or 

• Create their own custom format; or 

• Export to a standard format (limited support => 
custom solution) 

• Scoring outside of Spark also requires custom 
translation layer between Spark and another 
ML library 

Everything is custom!

• Tight coupling to Spark runtime 

• Introduces complex dependencies 

• Managing version & compatibility issues 

• Scoring models in Spark is slow 

• Overhead of DataFrames, especially query planning 

• Overhead of task scheduling, even locally 

• Optimized for batch scoring (includes streaming 
“micro-batch” settings) 

• Spark is not suitable for real-time scoring (< 
few 100ms latency)



Containers for ML 
Deployment
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Containers for ML Deployment

• But … 

• What goes in the container is most 
important 

• Performance can be highly variable across 
language, framework, version 

• Requires devops knowledge, CI / 
deployment pipelines, good practices 

• Does not solve the issue of standardization 

• Formats 

• APIs exposed 

• A serving framework is still required on top

• Container-based deployment has 
significant benefits 

• Repeatability 

• Ease of configuration 

• Separation of concerns – focus on what, not 
how 

• Allow data scientists & researchers to use 
their language / framework of choice 

• Container frameworks take care of (certain) 
monitoring, fault tolerance, HA, etc.



The Portable Format for 
Analytics



Overview

• PFA is being championed by the Data Mining 
Group (IBM is a founding member) 

• DMG previously created PMML (Predictive 
Model Markup Language), arguably the only 
viable open standard currently 

• PMML has many limitations 

• PFA was created specifically to address these 
shortcomings

• PFA consists of: 

• JSON serialization format 

• AVRO schemas for data types 

• Encodes functions (actions) that are applied to inputs 
to create outputs with a set of built-in functions and 
language constructs (e.g. control-flow, conditionals) 

• Essentially a mini functional math language + schema 
specification 

• Type and function system means PFA can be 
fully & statically verified on load and run by 
any compliant execution engine 

• => portability across languages, frameworks, 
run times and versions



A Simple Example

• Specify the action to perform (typically on 
input)

• Example – multi-class logistic regression 

• Specify input and output types using Avro 
schemas



Managing State

• Data storage specified by cells 
• A cell is a named value acting as a global variable 

• Typically used to store state (such as model 
coefficients, vocabulary mappings, etc) 

• Types specified with Avro schemas 

• Cell values are mutable within an action, but 
immutable between action executions of a given PFA 
document 

• Persistent storage specified by pools 
• Closer in concept to a database 

• Pools values are mutable across action executions



Other Features

• Special forms 
• Control structure – conditionals & loops 

• Creating and manipulating local variables 

• User-defined functions including lambdas 

• Casts 

• Null checks 

• (Very) basic try-catch, user-defined errors and logs 
• Comprehensive built-in function library 
• Math, strings, arrays, maps, stats, linear algebra 

• Built-in support for some common models - decision 
tree, clustering, linear models



Current Status

• Major missing features / limitations 

• No built-in support for mixed dense/sparse vectors 

• No built-in support for generic tensors 

• No built-in functions for typical Deep Learning models 
(e.g. CNN, RNN) 

• No support / awareness of GPU 

• Open questions 

• Industry usage and adoption 

• Performance and scalability

• Reference implementations 

• Hadrian project by Open Data Group 

• Covers PFA export / DSL in Python, R 

• Covers scoring for PFA in JVM, Python, R 

• What does PFA do well? 

• Type system 

• Flexibility & composability – functional approach 

• User-defined functions 

• Control flow 

• Strong support for traditional ML operations



Aardpfark

• PFA export for Spark ML pipelines 

• aardpfark-core: Scala DSL for creating PFA 
documents 

• avro4s to generate schemas from case classes; 
json4s to serialize PFA document to JSON 

• aardpfark-sparkml: uses DSL to export Spark ML 
components and pipelines to PFA



Aardpfark - Challenges

• Spark ML Model has no schema knowledge 

• E.g. Binarizer can operate on numeric or vector columns 

• Need to use Avro union types for standalone PFA components 
and handle all cases in the action logic 

• Combining components into a pipeline 

• Trying to match Spark’s DataFrame-based input/output 
behavior (typically appending columns) 

• Each component is wrapped as a user-defined function in the 
PFA document 

• Current approach mimics passing a Row (i.e. Avro record) from 
function to function, adding fields 

• Missing features in PFA 

• Generic vector support (mixed dense/sparse)



Aardpfark is open-source!

• Coverage 

• Almost all predictors (ML models) 

• Many feature transformers 

• Pipeline support (still needs work) 

• Equivalence tests Spark <-> PFA 

• Tests for core Scala DSL

• Need your help! 

• Finish implementing components 

• Improve pipeline support 

• Complete Scala DSL for PFA 

• Python support 

• Tests, docs, testing it out!

https://github.com/CODAIT/aardpfark 

https://github.com/salesforce/TransmogrifAI/tree/master/local 

https://github.com/CODAIT/aardpfark
https://github.com/salesforce/TransmogrifAI/tree/master/local


Related Open Standards



PMML

• Shortcomings 

• Cannot represent arbitrary programs / analytic 
applications 

• Flexibility comes from custom plugins => lose 
benefits of standardization

• Data Mining Group (DMG) 

• Model interchange format in XML with 
operators 

• Widely used and supported; open standard 

• Spark support lacking natively but 3rd party 
projects available: jpmml-sparkml 
• Comprehensive support for Spark ML components 

(perhaps surprisingly!) 

• Watch SPARK-11237 

• Other exporters include scikit-learn, R, 
XGBoost and LightGBM

https://github.com/jpmml/jpmml-sparkml
https://issues.apache.org/jira/browse/SPARK-11237
https://github.com/jpmml/sklearn2pmml
https://github.com/jpmml/sklearn2pmml
https://github.com/jpmml/r2pmml
https://github.com/jpmml/jpmml-xgboost
https://github.com/jpmml/jpmml-lightgbm


MLeap

• Shortcomings 

• “Open” format, but not a “standard” 

• No concept of well-defined operators / functions 

• Effectively forces a tight coupling between 
versions of model producer / consumer 

• Must implement custom components in Scala 

• Impossible to statically verify serialized model

• Created by Combust.ML, a startup focused on 
ML model serving 

• Model interchange format in JSON / Protobuf 

• Components implemented in Scala code 

• Good performance 

• Initially focused on Spark ML. Offers almost 
complete support for Spark ML components 

• Recently added some sklearn; working on 
TensorFlow



Open Neural Network Exchange (ONNX)

• Shortcomings 

• No or poor support for more “traditional” ML or 
language constructs (currently) 

• Tree-based models & ensembles 

• String / categorical processing 

• Control flow 

• Intermediate variables

• Championed by Facebook & Microsoft 

• Protobuf serialization format 

• Describes computation graph (including 
operators) 

• In this way the serialized graph is “self-describing” 
similarly to PFA 

• More focused on Deep Learning / tensor 
operations 

• Will be baked into PyTorch 1.0.0 / Caffe2 as 
the serialization & interchange format



Neural Network Exchange Format (NNEF)

• Shortcomings 

• No or poor support for more “traditional” ML or 
language constructs (currently) 

• Tree-based models & ensembles 

• String / categorical processing 

• Control flow 

• Intermediate variables

• Championed by Khronos Group 

• Dual format 

• Network structure file: describes computation graph & 
operators 

• Network data file: binary format for parameters 

• More focused on Deep Learning / tensor 
operations 

• Supports compound operators (user-defined 
functions)



Performance



Scoring Performance Comparison

• Comparing scoring performance of PFA with 
Spark and MLeap 

• PFA uses Hadrian reference implementation 
for JVM 

• Test dataset of ~80,000 records 

• String indexing of 47 categorical columns 

• Vector assembling the 47 categorical indices together 
with 27 numerical columns 

• Linear regression predictor 

• Note: Spark time is 1.9s / record (1901ms) - 
not shown on the chart



Wrapping Up



Summary

• However there are risks 
• PFA is still young and needs to gain adoption 

• Performance in production, at scale, is relatively 
untested 

• Tests indicate PFA reference engines need some work 
on robustness and performance 

• What about Deep Learning (e.g. ONNX)? 

• Limitations of PFA 

• A standard can move slowly in terms of new features, 
fixes and enhancements

• PFA provides an open standard for 
serialization and deployment of analytic 
workflows 
• True portability across languages, frameworks, 

runtimes and versions 

• Execution environment is independent of the producer 

• Solves a significant pain point for the 
deployment of ML pipelines and benefits the 
wider ML ecosystem 
• e.g. many currently use PMML for exporting models 

from R, scikit-learn, XGBoost, LightGBM, etc.



Future directions

• PFA for Deep Learning? 

• Comparing to ONNX and other emerging standards 

• Better suited for the more general pre-processing 
steps of DL pipelines 

• Requires supporting DL-specific operators 

• Requires standardized tensor schema and support for 
tensors in PFA function library 

• GPU support

• Extend our work in Aardpfark 

• Initial focus on Spark ML 

• Later add support for scikit-learn pipelines, 
XGBoost, LightGBM, etc 

• Performance testing & improvements 

• Propose improvements to PFA  

• Generic vector / tensor support 

• Less cumbersome schema definitions 

• Performance improvements to scoring engine
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Thank you!

codait.org  

twitter.com/MLnick  

github.com/MLnick 

developer.ibm.com

http://ibm.biz/model-exchange 

http://ibm.biz/max-developers  
        

FfDL

Sign up for IBM Cloud and try Watson Studio! 

https://ibm.biz/BdYVQS

MAX

http://ibm.biz/model-exchange
http://ibm.biz/max-developers
https://ibm.biz/BdYVQS


Links & References

Portable Format for Analytics 

PMML 

Spark MLlib – Saving and Loading 
Pipelines 

Hadrian – Reference Implementation of 
PFA Engines for JVM, Python, R 

jpmml-sparkml 

MLeap 

Open Neural Network Exchange

http://dmg.org/pfa/index.html
http://dmg.org/pmml/v4-3/GeneralStructure.html
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
http://spark.apache.org/docs/latest/ml-pipeline.html#saving-and-loading-pipelines
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/opendatagroup/hadrian
https://github.com/jpmml/jpmml-sparkml
https://github.com/onnx/onnx
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