

Overview and Recent Developments:
Kernel Self-Protection Project

Linux Security Summit EU
October 25, 2018

Edinburgh, Scotland

Kees (“Case”) Cook
keescook@chromium.org

@kees_cook

https://outflux.net/slides/2018/lss-eu/kspp.pdf

mailto:keescook@chromium.org
https://twitter.com/kees_cook
https://outflux.net/slides/2018/lss-eu/kspp.pdf

Kernel Security for this talk is ...

● More than access control (e.g. SELinux)
● More than attack surface reduction (e.g. seccomp)
● More than bug fixing (e.g. CVEs)
● More than protecting userspace
● More than kernel integrity
● This is about Kernel Self Protection

What needs securing?

● Servers, laptops, cars, phones, TVs, space stations, …
● >2,000,000,000 active Android devices in 2017

– Majority are running v3.10 (with v3.18 slowly catching up)
● Bug lifetimes are even longer than upstream
● “Not our problem”? Even if upstream fixes every bug found, and

the fixes are magically sent to devices, bug lifetimes are still
huge.

https://www.zdnet.com/article/the-iss-just-got-its-own-linux-supercomputer/
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaw fixes with CVEs,
and found that the average time between introduction and fix
was about 5 years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011
through 2018 crept closer to 6 years for a while, but has now
started to diminish:
– Critical: 3 at 5.3 years average
– High: 79 at 5.6 years average
– Medium: 691 at 5.9 years average
– Low: 349 at 6.2 years average

critical & high CVE lifetimes

Attackers are watching

● The risk is not theoretical. Attackers are watching commits, and
they are better at finding bugs than we are:
– http://seclists.org/fulldisclosure/2010/Sep/268

● Most attackers are not publicly boasting about when they found
their 0-day...

http://seclists.org/fulldisclosure/2010/Sep/268

Bug fighting continues

● We’re finding them
– Static checkers: gcc, Clang, Coccinelle, Smatch, sparse, Coverity
– Dynamic checkers: kernel, KASan-family, syzkaller, trinity

● We’re fixing them
– Ask Greg KH how many patches land in -stable

● They’ll always be around
– We keep writing them
– They exist whether we’re aware of them or not
– Whack-a-mole is not a solution

Analogy: 1960s Car Industry

● Konstantin Ryabitsev’s keynote at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U
● We must handle failures (attacks) safely

– Userspace is becoming difficult to attack
– Containers paint a target on the kernel
– Lives depend on Linux

https://twitter.com/monsieuricon
http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U

Killing bugs is nice

● Some truth to security bugs being “just normal bugs”
● Your security bug may not be my security bug
● We have little idea which bugs most attackers use
● Bug might be in out-of-tree code

– Un-upstreamed vendor drivers
– Not an excuse to claim “not our problem”

Killing bug classes is better

● If we can stop an entire kind of bug from happening, we
absolutely should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we’ll never kill all bug classes

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information exposures
● Eliminate anything that assists attackers
● Even if it makes development more difficult

Kernel Self-Protection Project

● KSPP focuses on the kernel protecting the kernel from attack (e.g.
refcount overflow) rather than the kernel protecting userspace from
attack (e.g. namespaces) but both and all other areas of related
development are welcome

● ~12 organizations and ~10 individuals working on ~20 technologies

 I used to say:

 Slow and steady

 but Alexander Popov
suggested a better motto:

Flexible and Persistent

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

A year's worth of kernel releases ...

v4.14

● 3 refcount_t conversions (bikeshedding stall)
● randstruct plugin (automatic mode)
● SLUB freelist pointer obfuscation
● structleak plugin (by-reference mode)

● VMAP_STACK, arm64

● set_fs() removal progress

● set_fs() balance detection, x86, arm64, arm

https://outflux.net/blog/archives/2017/11/14/security-things-in-linux-v4-14/

v4.15

● 35 refcount_t conversions (32 remaining...)
● PTI, x86
● retpoline

● struct timer_list .data field removal
● fast refcount overflow protection, x86 (also in v4.14 -stable)

● %p hashing

https://outflux.net/blog/archives/2018/02/05/security-things-in-linux-v4-15/

v4.16

● 12 refcount_t conversions (20 more?)
● PTI, arm64
● hardened usercopy whitelisting

● CONFIG_CC_STACKPROTECTOR_AUTO

https://outflux.net/blog/archives/2018/04/12/security-things-in-linux-v4-16/

v4.17

● 51 VLAs removed (83 remaining...)
● Clear stack on fork
● More fixes to stack RLIMIT on exec

● MAP_FIXED_NOREPLACE
● Unused register clearing on syscall entry, x86
● Speculative Store Bypass Disable, x86

https://outflux.net/blog/archives/2018/06/14/security-things-in-linux-v4-17/

v4.18

● 38 VLAs removed (45 remaining...)
● Arithmetic overflow detection helpers
● Allocation overflow detection refactoring
● Speculative Store Bypass Disable, arm64

https://outflux.net/blog/archives/2018/08/20/security-things-in-linux-v4-18/

v4.19

● 33 VLAs removed (12 remaining: most in crypto API)
● Shift overflow helpers
● L1TF defenses

● Restrict O_CREAT for existing files and pipes in /tmp
● Unused register clearing on syscall entry, arm64

https://outflux.net/blog/archives/2018/10/22/security-things-in-linux-v4-19/

Expected for v4.20

● VLAs removed completely, -Wvla added
● stackleak gcc plugin (x86 and arm64)

Various soon and not-so-soon features

● always initialized variables
● Link-Time Optimization
● switch fallthrough marking
● memory tagging
● eXclusive Page Frame Owner
● SMAP emulation, x86
● brute force detection
● write-rarely memory
● KASLR, arm

● integer overflow detection
● Control Flow Integrity
● per-task stack canary, non-x86
● {str,mem}cpy alloc size checks
● fine-grained KASLR
● per-CPU page tables
● read-only page tables
● hardened slab allocator
● hypervisor magic :)

Challenges

Cultural: Conservatism, Responsibility, Sacrifice, Patience
Technical: Complexity, Innovation, Collaboration
Resources: Dedicated Developers, Reviewers, Testers, Backporters

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org
keescook@google.com

kees@outflux.net

https://outflux.net/slides/2018/lss-eu/kspp.pdf

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/

##linux-hardened on Freenode

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2018/lss-eu/kspp.pdf
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

