OpenOCD - Beyond Simple
Software Debugging

Oleksij Rempel - o.rempel@pengutronix.de

rPe\ngutromx ,
) https://www.pengutronix.de




Why | use OpenOCD?

= Reverse engineering and for fun
= This is the main motivation behind this talk

= Debugging
= Testing

F2/39



My reverse engineering rules

* |nvestigate public materials
Standards
= Documentation
= Patterns
= Try to apply gained knowledge to similarly purposed
systems

= New technology is expensive and vendors are trying to reuse
as much as possible

= Assumptions are OK!

ﬁ3/39



The target group

= Everyone who used OpenOCD for software debugging
or reverse engineering

= Everyone who has time to use OpenOCD on
unsupported or untested HW

= Everyone who is interested in exploring HW from JTAG
perspective

i



History of JTAG

= 1986 - Philips forms Joint European Test Action Group
= 1990 - IEEE Standard 1149.11990 published

= JOURNAL OF ELECTRONIC TESTING: Theory and
Applications, 2, 1125 (1991)

[



boundary scan

Test—-Data In

Test—-Mode Select
Test Clock

DI

{ Bypass

Identification Register

ik

Instruction Register

™S TAP

TCK Controller

120 Test-Data Out

Fig. 1. IEEE Standard 1149.1-1990 architecture.

ﬁ6/39



Boundary Scan

BS!! :D

Test-Data In

Test—-Mode Select

=

DI

L

Instruction Register

Test Clock

T™MS

TCK

TAP
Controller

Bypass J"}

Identification Register

120 Test-Data Out

Fig. 1. IEEE Standard 1149.1-1990 architecture.

I



History

= Now 2018, 28 years later...

= We are still using this technology but have no idea how
to use it for the original purpose - boundary scan!

= Let's go back to the roots!!! ;)

ﬁ8/39



What is BSDL

= Boundary Scan Description Language

= 1149.1b-1994 “Supplement to IEEE Std 1149.1-1990,
IEEE standard test access port and boundary-scan
architecture”

= 1149.1-2001 “IEEE standard test access port and
boundary-scan architecture”

ﬁ9/39



BSDL Example 1

File Name
Author
Version
Date
Description

STM32F302 F303 B C_LQFP100.bsd

STMicroelectronics www.st.com

vi.e

13-August-2015

Boundary Scan Description Language (BSDL) file for the
STM32F302_F303_B_C_LQFP100 Microcontrollers.

Ed Al dad il ittt il id ittt

*
*
*
*
*
*
*
THE PRESENT SOFTWARE WHICH IS FOR GUIDAMCE ONLY AIMS AT PROVIDING CUSTOMERS o
*
*
*
*
*
*

e 2w rw wm ww

WITH CODING IMFORMATION REGARDIMG THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING

- * INFORMATIOMN CONTAIMED HEREIN IN CONMNECTION WITH THEIR PRODUCTS.

B el L L L T e

-- * This BSDL file has been syntaxed checked and validated by:

1
* ¥ ¥ % ¥ ¥ ¥ ¥ ¥ % ¥ ¥

- * GOEPEL SyntaxChecker Version 3.1.2 *
- hEkEkhkFAAAAAAA A AR AR A A A A AR AR A A A AR AR ARk Rk Rk kR hhkhhh Rk hhh kb kb khkhh kA kb kb h kR

entity STM32F302_F303 B _C_LQFP100 is

-- This section identifies the default device package selected.
generic (PHYSICAL PIN MAP: string:= "LQFP108 PACKAGE");

-- This section declares all the ports in the design.

port (
BOOTO : in bit;
JTDI : in bit;
JTMS : in bit:
JTCK : in bit;
JTRST : in bit;
JTDO : out bit; 10/39

NRST in bit; -- modification to add COMPLIANCE_ PATTERNS



BSDL Example 2

attribute INSTRUCTION_LENGTH of STM32F302_F303_B_C_LQFP100: entity is 5;
-- Specifies the boundary-scan instructions implemented in the design and their opcodes.

attribute INSTRUCTION OPCODE of STM32F302_F303_B_C_LQFP100: entity is
"BYPASS (11111),"
"EXTEST (00000),"
"SAMPLE (00010),"
"PRELOAD (00010),"
"IDCODE (00001)";

o |

-- Specifies the bit pattern that is loaded into the instruction register when the TAP controller
-- passes through the Capture-IR state. The standard mandates that the two LSBs must be "01". The
-- remaining bits are design specific.

attribute INSTRUCTION_CAPTURE of STM32F302_F303_B C_LQFP100: entity is "XXX01";

-- Specifies the bit pattern that is loaded into the DEVICE_ID register during the IDCODE
-- instruction when the TAP controller passes through the Capture-DR state.

attribute IDCODE_REGISTER of STM32F302_F303_B_C_LQFP1808: entity is

AKX & -- 4-bit version number
"0110010000100010" & -- 16-bit part number

"00000100000" & -- 11-bit identity of the manufacturer
g g -- Required by IEEE Std 1149.1

-- This section specifies the test data register placed between TDI and TDO for each implemented
-- instruction.

attribute REGISTER_ACCESS of STM32F302 F303 B C_LQFP18@: entity is
"BYPASS (BYPASS)," &
"BOUNDARY (EXTEST, SAMPLE, PRELOAD)," & 11/39
"DEVICE_ID (IDCODE)";




BSDL Example 3

attribute BOUNDARY_LENGTH of STM32F302_F303_B_C_LQFP100@: entity is 250;

-- The following list specifies the characteristics of each cell in the boundary scan register from

-- TDI to TDO. The following is a description of the label fields:

-- num
-- cell
-- port

-- function

-- safe

-- ccell

-- disval

-- rslt

-

-
®
"
=
w
=
®

-
M

"
-

Is the cell number.
Is the cell type as defined by the standard.
Is the design port name. Control cells do not have a port name.

Is the function of the cell as defined by the standard. Is one of input, outputz,

output3, bidir, control or controlr.

specifies the value that the BSR cell should be loaded with for safe operation

when the software might otherwise choose a random value.

The control cell number. Specifies the control cell that drives the output enable

for this port.

Specifies the value that is loaded inte the control cell to disable the output

enable for the corresponding port.
Resulting state. Shows the state of the driver when it is disabled.

attribute BOUNDARY REGISTER of STM32F302 F303 B C LQFP108: entity is

- - num

cell port function safe [ccell disval rslt]
(BC.1, *, CONTROL, 2 6y
(BC_1, PE2, OUTPUT3, X, 249, i r 5
(BC_4, PE2, INPUT, X
(B 1. =~ CONTROL, i)
(BC_1, PE3, OUTPUT3, i 246, 1, T,
(BC_4, PE3, INPUT, X).
(BC 1, *, CONTROL, 1
(BC_1, PE4, OUTPUT3, X 243, A 2
(BC_4, PE4, INPUT, X),

0O PO 0O 2O DO DO PO O o

12/39



The road map

= How to get JTAG access on modern SoCs.
= Exploring diferent TAPs and seeking BS register
= Reading BSDL files.

= Unfriendly vendor and no BSDL file, trying to reverse
engineer it.

= Practical example.
= Combine CPU and BS tests? Is it possible?

ﬁ3/39



Exploring JTAG port

* |n the perfect world, we would have a dedicated JTAG
connector in accordance with some valid specification,
working all the time from power on till power off.

= The reality is different:

= |In many cases JTAG pins are enabled by the SoC ROM, with some
delay after power on (or power cycle)

= The pins have JTAG functionality only limited time after some
event

= Many TAPs and DAPs with some differences from default or well-
known specifications

Welcome to the JTAG zoo! ﬁ
14/39



Getting JTAG access

= There are two states:
It just works!
= Go with me, I'll show you how some vendors do it! :D

ﬁmg



Exploring JTAG port (time frames)




Exploring JTAG port (Allwinner JTAG/SD)

= Most of the Allwinner SoCs have JTAG multiplexed with
SD card signals. It is not a secret, but not well-

documented

= This port can be used only within a short time frame:

= Some X millisecs after power on JTAG gets enabled

= X+Yms after power on this port is switched from JTAG to SD,
so we have just a small window to access JTAG

ﬂﬁmg



Exploring JTAG port (Allwinner JTAG/SD)

Remote controllable
bench power supply and
logic analyser are your
friends

Use adapter nsrst delay

Increase adapter _khz
speed to fit to narrow
time frame

Add some pull-up resistor
to the TDI line and
measure it




Exploring JTAG port (Allwinner JTAG/SD)

= 1. no pull-ups, 2. pull-upson 1,2,3,4




Exploring JTAG port (Allwinner JTAG/SD)




Exploring JTAG port (Open Sesame)




Exploring JTAG port (Open Sesame)

= Nicely documented JTAG/ICSP interfaces made by
Microchip for PIC32xx series

FIGURE 7-1: ENTERING ENHANCED ICSP™ MODE
— >  ~—P20
:‘i";_ big P19, P7
—_— : ) P VIH VIH- - === - - '
MCLR , VAR . 7 ;
VDD / :
4’./ Program/Verify Entry Code = 0x4D434850
PGEDX | o /1 \o o /1 Y..\o o o o .
, b31 b30 b29 b28 b27 b3 b2 bl bO ,
PGECX : AVAVAVAVAVAVAVAWAWA
. P18 . —= =~—PIA |
P, ' |
' —»' '«<—P1B

ﬁmg



Exploring the internals

ﬂi3/39



Exploring the internals

TMS

Y_ VY

TAP-Co

ntroller

TCK

A

y

TDI

Y

Instruction Register

Shift IR / Shift DR

»

Y
\ Instruction Decoder

YY

Bypass

Register

>

Data Registef
Selec

YY

IDCODE

Register

|

... Register

YY

Boundary Scan Register

A
y

A
A

A
Y

<

Y

TDO

10

10

10

Let’'s assume we got
access to the SoC, what
can we explore?

TAP - test access port

Typical instructions
provided by a TAP:

= IDCODE
= Boundary scan
= Bypass

Emg



Exploring the internals

= The times they are a-changin', after 28 years internals
are a bit more complicated

» Let’s take as example STM32 and do following steps:
Find the right TAP
Find the right Instruction
Find the right Bits

ﬂimg



Find the right TAP

Figure 405. JTAG TAP connections

NJTRST
JTMS

JTDI [

JTDO [

STM32 MCU

_|

SW-DP

Selected

Y v
TMS nTRST TMS nTRST
]—N TDI TDO » TDI TDO
Boundary scan
AL Cortex-M4 TAP

: IR is 5-bit wide IR is 4-bit wide

ai14981c

ﬁmg



Find the right Instruction

attribute INSTRUCTION_LENGTH of STM32F302_F303_B_C_LQFP100: entity is 5;
-- Specifies the boundary-scan instructions implemented in the design and their opcodes.

attribute INSTRUCTION_OPCODE of STM32F3@2_F303_B_C_LQFP10@: entity is
"BYPASS (11111),"
"EXTEST (00080),"
"SAMPLE (00018),"
"PRELOAD (00010),"
"IDCODE (000081)";

g go po o

-- Specifies the bit pattern that is loaded into the instruction register when the TAP controller
-- passes through the Capture-IR state. The standard mandates that the two LSBs must be "@1". The
-- remaining bits are design specific.

attribute INSTRUCTION CAPTURE of STM32F302 F303 B C LQFP100: entity is "XXXo1";

-- Specifies the bit pattern that is loaded into the DEVICE_ID register during the IDCODE
-- instruction when the TAP controller passes through the Capture-DR state.

attribute IDCODE_REGISTER of STM32F3@2_F303_B_C_LQFP100: entity is

"RAXX" & -- 4-bit version number
"0110010000100010" & -- 16-bit part number

"000RA100000" & -- 11-bit identity of the manufacturer
gl -- Required by IEEE Std 1149.1

-- This section specifies the test data register placed between TDI and TDO for each implemented
-- instruction.

attribute REGISTER_ACCESS of STM32F302_F303_B_C_LQFP100: entity is
"BYPASS (BYPASS)," &
"BOUNDARY (EXTEST, SAMPLE, PRELOAD)," & 27/39
"DEVICE_ID (IDCODE)";




Find the

right Bits

"154
"153
"152
"151
"150
"149
"148
"147
"146
"145

"140
"139
"138
"137
"136
"135
"134
"133
"132
"131
"136
"129
"128
"127

(BC_4,
(BC_1,
(BC_1,
(BC_4,
(BC_1,
(BC_1,
(BC_4,
(BC 1,
(BC_1,

(BC_1,
(BC_1,
(BC_4,
(BC_1,
(BC_1,
(BC_4,
(BE T,
(BC_1,
(BC_4,
(BC_1,
(BET;
(BC_4,
(BC_1,
(BC_1,
(BC_4,

PET;

*
]

PES,
PES,
*

]
PE9,

PE9,

*
]

PE10,

INPUT,
CONTROL,
OUTPUT3,
INPUT,
CONTROL,
OUTPUT3,
INPUT,
CONTROL,
OUTPUT3,
INPUT
CONTROL,
OUTPUT3,
INPUT
CONTROL,
OUTPUT3,
INPUT,
CONTROL,
OUTPUT3,
INPUT,
CONTROL,
OUTPUT3,
INPUT,
CONTROL,
OUTPUT3,
INPUT,
CONTROL,
OUTPUT3,
INPUT,

1),

1),

X)s

153,

150,

147,

141,

138,

135,

132,

129,

Z),

zZ),

Z),

zZ),

Z),

),

Z),

),

20 Qo Do Qo DO DO QO RO DO RO RO DO RO Do Do Polclclipo Do oDo Qo RO DO DO RO Do oo

28/39



Exploring JTAG port (BS on STM32)

= Video demonstration of using JTAG boundary scan on
STM32F3
= The bsr.tcl script by Paul Fertser
= |nit BS TAP
= Scan for floating PADs
= Scan for changed PADs after adding pull-up/down.

= Test related control bits for given PAD. For example:
= Bit 142 - read input state
= Bit 143 - set output state
= Bit 144 - switch between input and output mode. ﬂ?’/”



Exploring JTAG port (BS on STM32)




Crazy idea:
What if we configure a pin from GPIO peripheral and test it with BS?

ﬂ‘zmg



ﬂIIAII.ENIiE ACCEPTED

ﬁ2/39



Exploring JTAG port (GPIO + BS on STM32)

* |s it possible with JTAG BS to read a PAD which was

configured by GPIO peripheral? Yes! At least on some
SoCs

= Steps made in following video:
= Start JTAG and halt CPU.
Enable CLK for GPIO controller.

= Measure PAD with GPIO, then switch the PAD to output mode
= Switch to the JTAG BS mode and read out PAD state

ﬁ3/39



Exploring JTAG port (GPIO + BS on STM32)




Exploring JTAG port (GPIO + BS on PIC32)

= Same test on PIC32
= Suddenly it needed more work than expected

= PIC32xx has multiple taps but not connected in chain so
BYPASS instruction is not applicable. We have here two
vendor instructions: switch to MTAP and switch to ETAP

= The BS iIs available on MTAP

ﬂz/gg



Exploring JTAG port (GPIO + BS on PIC32)

FIGURE 5-2: BASIC PIC32 PROGRAMMING INTERFACE BLOCK DIAGRAM

HIiNEEENIEEEEE

— TMS

—  TCK

— TDI

<4— TDO

—>
o
—>

or

[T ITITTT]

— PGECx —»

<4— PGEDx —»

Common

\VDD/VDDIO/\VDD1V8CORE
VVBAT/VDDR1VS

44— V\/ss/Vss1vs

<4+— MCLR

HEEENERENIN

ﬂimg



Exploring JTAG port (GPIO + BS on iIMX06)

= Same test on IMX6
= BS is implemented on SJC TAP

= This was fast, the BS instruction is directly connected to
reset controller. Executing BS will automatically put CPU
In reset state

= BS should still be possible with correctly configured
bootstrap pins (see the SoC manual)

ﬂimg



Exploring JTAG on IMX6

= |mplemented and
tested TAPs for iIMX6:

= MPCore, Cortex-A9

* Not implemented or not
upstreamed parts:

= Everything else :)

MPCori
Cortex-
P Contr
[ Prws crrs e8]
APB e
0 PCle
SDMA <« > PHY
————— DAP 18
TDI DO Do -‘-I ol SATA
A I | 1 PHY
SIC
Y
SDMA
ypass T
A
I L
1 0 Juf
L SJ Ct
ExtraDebug Reg T
TOI o | | | IOMUX
AG_TMS
AG_TCK T ¢
AG_TRSTB JTAG_TDO  lJTAG_MOD
I/O PINS G :
Figure 56-1. System JTAG Controller (SJC) Block Diagram



Thank you!

Questions?

fPe\ngutromx
) https://www.pengutronix.de




	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

