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Organization of talk

1. Past works at CUNY on management of adaptive network services

Granularity of management:
service-level, protocol-level, parametric-level

2. Programmable adaptation processes in video transport for ONAP
Modular structuring of rate controllers
--- model-predictive versus model-oblivious control
--- Rate control on aggregated flows
--- User-participatory control (e.g., QoS dashboard)

3. Deployment scenario in a CDN (content delivery network)



Motivation for
development of adaptive network systems
with ONAP-style structuring

1. Enhanced performance in a variety of traffic scenarios

2. Resilience against harsh environment conditions

dynamically varying external conditions
(hard-to-observe or predict)

ONAP-style system structures enable a decision-engine to
orchestrate adjustment of system objects at desired granularity



PAST WORKS AT CUNY ON
NETWORK ALGORITHMS AS SOFTWARE OBJECTS

[for enhanced network performance and resilience]

Published papers in:
NOMS, IM, CNSM, IPDPS, DRCN, ISSE, COMSNETS, . . (2006 — 17)




“Distributed Protocols” (algorithms) as virtualized network functions
[enables on-the-fly switching of algorithms by a decision-engine]
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Management control of quality of QoS support mechanisms
*desired QoS (9)

Target network analyze service-layer algorithms
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system > Decision-
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Why ONAP-style system structures ??

Verifiable guarantees of system performance and resilience
(needed for mission-critical applications: such as DOD, NASA)

A system that 1s good
but 1s not verifiably good 1s
not good enough !!

[e.g., quality rating of restaurants, hotels, taxi services, . . .]

3-star, 4-§tar, etc

Underlying service-layer algorithms should be:
Malleable, Programmable, and Quantifiable



System responsiveness to external environment

QoS specs ¢, algorithm parameters par,
system resource allocation R are usually controllable imputs

In contrast, environment parameters e € £* are often uncontrollable
and/or unobservable, but they do impact the system-level performance
(e.g., component failures, network traffic fluctuations, attacks, etc)

environment parameter space.
E* = E(yk) U E(nk) U E(ck)

________________________

parameters that the
parameters that the designer does not

; designer can never
designer knows about currently know about l?now about
(known “knowns”) (knowable “unknowns”)  (known “impossibilities”)

What about unknown “unknowns” ?? - Hon. D. Rumsfeld

Algorithm design decisions face this uncertainty --- so, designer makes
certain assumptions about the environment
(e.g., at most 2 nodes will fail during execution of a data replication algorithm).
When assumptions get violated, say, due to attacks,
algorithms fall short of what they are designed to achieve
ONAP structure allows evaluating how good an algorithm performs in strenuous conditions



Network Function Virtualization (NFV) for
Video Content Delivery to End-users

ONAP perspective



Adjustment of quantization parameter (QP) to control video bit-rate

Take a macro-block and encode it with a certain QP 4 %, 4,
. . . . high P €.
Low QP =» distortion (D) in comparison . R
to the original image will be low, bit rate
but the bit rate (R) will be high generated
Choose a high QP
=» distortion will be high, but the bit-rate will be low 0 low high le
higher QP =
(increased distortion
As quantization QP = 0(+), encoder rate A = 251 mbps & reduced quality)

[lossless compression =» best visual-quality]

Higher QP =>» lower bit rate (and hence lower visual-quality)

Typical range of QP used during no congestion: 28-35
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visual-quality (VQ) is a user-oriented
subjective parameter

=>» can be categorized in decreasing order, say:
[BEST, BEST(-), BETTER, GOOD(+), GOOD, GOOD(-), BAD]

Experimental results collected on sample video sources
(with FF-MPEG software) show rate burstiness and variability
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Iterative adjustment of video bit-rate to effect congestion-relief

Additive Increase Multiplicative Decrease (AIMD)
[CDIOT(1994), VBHARGAVAN(2001), JKUROSE(1998), . . . ]

“available bandwidth” on a transport path is unknown

In each interval for ‘packet-loss reporting’, adjust send rate of « .
rate adjustment

actions

Aoew) = Mcur) - B.L  when L > 0O, T ‘ F

where > 0 & !=

Nl .

Anew) = Acur) + @ when L <9, '\‘»‘O@ i i

where a > 0 b S On

observed

L: observed “packet loss ratio” packet loss L

0L, oh: Acceptable loss thresholds
[0/ < Onr to avoid ping-pong effect]

M Each execution of this procedure constitutes a “control iteration”
M A sequence iterations that lead to a steady-state in bandwidth usage

(when the bit-rate specs change or new video flows are admitted)
constitutes a “control round”



EDSI Virtualized network function (NFV) for EDSI
. BW adaptive end-to-end video transport
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video downloads)

reduced signaling overhead: O(N)
FAM: tlow aggregation module AIMD—complifed aggregate data send rate A’ (bps) over
(packet mux/demux, one or more control epochs such that L <9 : say, 6=0.007

AIMD-based rate control, . .) A\’ is determined from the

: . .
EDSI: end-user device current send rate A and available bandwidth Bav

signaling interface A’ issplitas A’a, A’h, A’c at sink end-point
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Virtualized Network Functions (VNF) Pertinent to
Video Content delivery Under BW Constraints

SVC: scalable (fine-granular) video control

RBR: agent-allocated bit-rate for source

(encoder internally maps RBR on to QP) VBR: variable bit-rate output )
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In-network deployment of BAVT-NFEV at cloud edges
(prototype on PlanetLab)

Video content

master server
(hosts video content)

HTTP requests from clients
to pull video content are
dirgg:tg.d to these nodes

always keeps video
chunks up-to-date
=

....................

different sizes, based

ca-cj. Client devices

-..—local attachment (via access network)

._Non-participant node & link

on allocated bit-rates))

(handle video chunks of

haun

Video content storage node
serving as mirror site for R,
(with multiple video encoders)

@ ® AIMD-level data flow
@ ingress/egress points

Transport path segment

#— to carry data flows (say,
UDP or TCP connection)

CDN overlay distribution
path segment (realized over
a data transport path ——)

[for asynchronous push of video

chunks from R to mirror sites]

Video data transport from
---» content mirror sites & content
---» rendering at client devices
---» (over last-mile access links)

ID OID O
Video encode & decode instances,

""" treated as NFV/SDN functions

[peer modules running on overlay
mirror site device & client device]

NFV/SDN functions that serve as
flow aggregation point peers, to
exercise AIMD-based rate control
on multiple video data flows



