
Virtualization of Network Functions for
Bandwidth-Adaptive Video Content Delivery

[ONAP perspective]

Project managed by:
Kaliappa Ravindran and Arun Adiththan **

Dept. of Computer Science
City University of New York (CUNY – City College & Graduate Center)

Student participants at CUNY – City College & GC
Joseph Shaker, Ashik Acchu, Tian Chen, Rbecca Batat

Government Lab Collaborator: US Air Force Research Lab, Rome, NY
[Amjad Soomro, Matthew Anderson]

Potential Industry Collaborators AT&T Research, Verizon, . . .

[** Research Scientist (General Motors, June’18 - _)]

Organization of talk

1. Past works at CUNY on management of adaptive network services
Granularity of management:

service-level, protocol-level, parametric-level

2. Programmable adaptation processes in video transport for ONAP
Modular structuring of rate controllers

--- model-predictive versus model-oblivious control
--- Rate control on aggregated flows
--- User-participatory control (e.g., QoS dashboard)

3. Deployment scenario in a CDN (content delivery network)

Motivation for
development of adaptive network systems

with ONAP-style structuring

1. Enhanced performance in a variety of traffic scenarios

2. Resilience against harsh environment conditions

dynamically varying external conditions
(hard-to-observe or predict)

ONAP-style system structures enable a decision-engine to
orchestrate adjustment of system objects at desired granularity

PAST WORKS AT CUNY ON
NETWORK ALGORITHMS AS SOFTWARE OBJECTS

[for enhanced network performance and resilience]

Published papers in:
NOMS, IM, CNSM, IPDPS, DRCN, ISSE, COMSNETS, . . (2006 – 17)

“Distributed Protocols” (algorithms) as virtualized network functions
[enables on-the-fly switching of algorithms by a decision-engine]

Network applicationInvocation
on service S
{q-x,q-y, . .}

Agent layer implementing
service interface for S

map protocol state onto service interface state

QoS parameters
--- e.g., content access

latency in CDN

Agent
a

Agent
b

exercise resources
--- abstracted as mapping function

R = F1([qx,qy,..],E*)

Protocol-internal state

pi1,pi2,pi3

Distributed processes
implementing protocol

Pi(S): i=1,2
protocol P1(S):
active instance
protocol P2(S)

is inactive

Distributed realization of
system infrastructure ‘resources’

E.g., placement of
mirror sites in a CDN

ex
ter

na
l

en
vir

on
men

t E
*

[e.
g.,

 ou
tag

es,
 fa

ult
s,

att
ack

s, .
 .]

A
synchronous processes

im
plem

enting protocol
(i.e., algorithm

)

signaling network to coordinate
protocol processes

protocol
internal statep11 p12 p13p2

1

p2
2 p2
3

signaling
messages A single-shoe

doesn’t fit all sizes !!

Service interface state

Repertoire of
optimistic and

pessimistic
algorithms

Management control of quality of QoS support mechanisms

achieved
QoS q’

prescribed QoS q

higher adaptivity
exhibited by S

hostility of environment condition e ∈ E* (incident on S)0.0 1.0

(most
severe)

Alternate instances of S (1,2,3, ..), with
different algorithms and/or parameters

algorithm 1
algorithm 2

algorithm 3

eh

cross-overpoints

System instance 1 is more resilient than instance 2, in dealing with environment condition eh;
Instance 2 is more resilient than instance 3.

analyze service-layer algorithms
and resource allocationsTarget network

system
S

[controlled system:
algorithms, resources,
adaptation logic, etc]

external
environment

E*
attained QoS (q’)

desired QoS (q)

Decision-
Engine

(realized by
management entity)

run-time selection of algorithm

A single-shoe doesn’t fit all sizes !!

Why ONAP-style system structures ??
Verifiable guarantees of system performance and resilience

(needed for mission-critical applications: such as DOD, NASA)

A system that is good
but is not verifiably good is

not good enough !!
[e.g., quality rating of restaurants, hotels, taxi services, . . .]

3-star, 4-star, etc

Underlying service-layer algorithms should be:
Malleable, Programmable, and Quantifiable

System responsiveness to external environment
QoS specs q, algorithm parameters par,
system resource allocation R are usually controllable inputs

In contrast, environment parameters e ∈ E* are often uncontrollable
and/or unobservable, but they do impact the system-level performance

(e.g., component failures, network traffic fluctuations, attacks, etc)
environment parameter space:

E* = E(yk) ∪ E(nk) ∪ E(ck)

parameters that the
designer knows about

(known “knowns”)

parameters that the
designer does not

currently know about
(knowable “unknowns”)

parameters that the
designer can never

know about
(known “impossibilities”)

Algorithm design decisions face this uncertainty --- so, designer makes
certain assumptions about the environment

(e.g., at most 2 nodes will fail during execution of a data replication algorithm).
When assumptions get violated, say, due to attacks,

algorithms fall short of what they are designed to achieve

What about unknown “unknowns” ?? Hon. D. Rumsfeld

ONAP structure allows evaluating how good an algorithm performs in strenuous conditions

Network Function Virtualization (NFV) for
Video Content Delivery to End-users

ONAP perspective

Adjustment of quantization parameter (QP) to control video bit-rate
Take a macro-block and encode it with a certain QP

Low QP distortion (D) in comparison
to the original image will be low,
but the bit rate (R) will be high

Choose a high QP
distortion will be high, but the bit-rate will be low QP

bit rate
generated

Increasing

scene complexity

0

high

low high
higher QP

(increased distortion
& reduced quality)As quantization QP 0(+), encoder rate λ 251 mbps

[lossless compression best visual-quality]

Higher QP lower bit rate (and hence lower visual-quality)

Typical range of QP used during no congestion: 28-35
visual-quality (VQ) is a user-oriented
subjective parameter

can be categorized in decreasing order, say:
[BEST, BEST(-), BETTER, GOOD(+), GOOD, GOOD(-), BAD]Internal structure of H.264 video encoder (typical)

.

.

Encoder

Rate
controller

QP bit-rate

raw
video

co
m

pr
es

se
d

vi
de

o
da

ta
bi

t-s
tre

am
(f

or
 st

or
ag

e,
tra

ns
m

is
si

on
)

dem
anded

bit rate

sc
en

e
co

m
pl

ex
ity

es
tim

at
e

Smoothing
buffer

Experimental results collected on sample video sources
(with FF-MPEG software) show rate burstiness and variability

quantization parameter (QP)

bi
t-r

at
e

λ
ge

ne
ra

te
d

by
 e

nc
od

er
(k

ilo
bi

ts
/s

ec
)

250
500

1000

1500

2000

2500

3000
3250

105 20 30 40 50

x
x

x
xxx

x
x x x

o

o

o

o o

o o o

z
source-1

source-0
z

z
z

z

z
z z

source-2

y

y

y

y
y

y
y y

source-3

0 2 4 6 8 12 16 20 28 36
TIME in secs

x

x

x

x
x

averaged over
1-sec intervals

x x x x x

x

x
xx x x

x

x
x x

x
x

x

x x x x x
x x x x x xx xx x x x x x x x x x

long-term average
(over 5-sec intervals)

900 video frames (H.264) played out @ 25 fps

(sample case of
source 0)

Source-1: QP=26, visual_quality = GOOD

Source-2: QP=28, visual_quality = BETTER

Source-3: QP=28, visual_quality = BETTER

100

200

300

400

500

Bit-rate generated
by video encoder

(λ in kbps)
less

motion
same degree
of motion in
scene content

QP45

40

35
0

Iterative adjustment of video bit-rate to effect congestion-relief
Additive Increase Multiplicative Decrease (AIMD)

[CDIOT(1994), VBHARGAVAN(2001), JKUROSE(1998), . . .]

“available bandwidth” on a transport path is unknown

In each interval for ‘packet-loss reporting’, adjust send rate of data:

λ(new) = λ(cur) - β.L when L > δh,
where β > 0

λ(new) = λ(cur) + α when L < δl,
where α > 0

L: observed “packet loss ratio”
δl, δh: Acceptable loss thresholds

[δl < δh to avoid ping-pong effect]

^^ Each execution of this procedure constitutes a “control iteration”

^^ A sequence iterations that lead to a steady-state in bandwidth usage
(when the bit-rate specs change or new video flows are admitted)
constitutes a “control round”

observed
packet loss L

decr
eas

e

incre
ase

δl
0 δh

rate adjustment
actions

packet flow (for
video downloads)

λ’b

λ’a

λ’c
co

m
pr

es
se

d
vi

de
o

da
ta

 fl
ow FA

M
(A

IM
D

-s
ou

rc
e) receiver proxy

(A
IM

D
-sink)

EDSI EDSI
Dx

N
w

ireless receivers

. .

. .

. .

. .

. .

. .

Dy

Dz

Du
“end-to-end packet loss”

signaling (L)

signaling of

encoder meta-data

[codec_type,
frame_rate, . .]

delivery &
rendering

λ’ = BAVT (λ,Bav*)

aggregate send rate λ’

transport path over
cloud network (say, TCP)

c1 c2
L = net(λ,Bav*)

[equipped with H.264
encode capability]

source
Vc

source
Va

source
Vb

se
rv

es
D

x,D
y

se
rv

es
D

z
se

rv
es

D
u

[equipped with H.264
decode capability]

signaling of encoder

run-tim
e parameters

[quantization,

bit_rate, . .]

ne
tw

or
k

at
ta

ch
m

en
t

po
in

t

Virtualized network function (NFV) for
BW adaptive end-to-end video transport

FAM: flow aggregation module
(packet mux/demux,

AIMD-based rate control, . .)

AIMD-computed aggregate data send rate λ’ (bps) over
one or more control epochs such that L < δ : say, δ=0.007

λ’ is determined from the
current send rate λ and available bandwidth Bav*

λ’ is split as λ’a , λ’b , λ’c at sink end-point

reduced signaling overhead: Ο(N)

EDSI: end-user device
signaling interface

higher β during congestion relief;
no change in α
(no differentiation of steady-state
and congestion-relief state)

higher β during congestion relief;
Steady-state: β is reduced to base value;

α is increased from base value

Bav*

For base values for β, α

higher β during congestion relief;
Steady-state: β is reduced to base value;

no change in α

higher β during congestion relief;
Steady-state: β is reduced to base value;

α is lower than base value

available bandwidth on
transport connection

bx

by

0
desired

send rate λ
send rate λ’

λ’(x)

λ’(y)

λ’
λ’(x)

λ’(y)

congestion-relief

convergence
detection latency

Tc=9
Tl=4

limit-cycle
time

TIME
(iteration #s)

congestion-relief

Tc=10

Tl=4

congestion-relief

Tc=10

Tl=2
Tl=3

λ’(x)

λ’(y)

λ

λ

1 2 3 6 10 154 5 20

BW
depletion

22

low ; medium
dt
d 'λ

T l

'λ∆

medium
high

dt
d 'λ T l

'λ∆

high ; medium dt
d 'λ

T l

'λ∆
medium ; medium dt

d 'λ
T l

'λ∆

rate jitter: 






 ∆
dt

d
T l

',' λλSample timing scenario of AIMD

0 < by <bx

steady-state
detection by

algorithm

λ’

Virtualized Network Functions (VNF) Pertinent to
Video Content delivery Under BW Constraints

SVC: scalable (fine-granular) video control

SVC
encoder

SVC
decoder

x xxx
xx

stored
video

content

data packet flow over
end-to-end network path

(e.g., UDP/IP)

“leaky-bucket”
buffer

play-out
bufferFF-MPEG

FF-MPEG
injected
bit-rate

Bdem

transport
agent

transport
agent

RBR: agent-allocated bit-rate for source
(encoder internally maps RBR on to QP)

VBR RBR

VBR

VBR: variable bit-rate output
receiver
device

“loss/delay” reports

available
bandwidth

Bav
x: data unit

“softwarization” view of core network functions≡
softwarized
SVC module

softwarized
bandwidth-adaptive

transport module
(AIMD)display

size

QP

bandwidth
demand

Bdem

Bdem
Bav

allowed
bit-rate presentation

quality
estimator

QP

scene

f1

f2
.
.

flow
aggregation

point

send data packets into
core transport network

sustainable rate λ’ < λ

user-level attempted
data flow rate (aggregated)λ:

H.264-encoded

data flow (say)

. . . .
. . . .

G
U

I-
in

te
rn

al
m

ap
pi

ng

0.0 1.0
QoS space

SLIDING BAR
FOR CONTROL

current
display

next
display

OK cancel

USER-ASSISTED CONTROL OF
VIDEO DATA FLOW & NETWORK BW

(including “LAST-MILE” segment)

‘fuel-gauge’-type of BW
availability indicator

REDUCE

IMPROVE

Min. acceptable rate
λi(min)

Max. budgeted
rate λi’

DASHBOARD

current
send rate

λi”

so
ft

w
ar

e
st

ub
s[visual display]

set reference
parameters to use
video encoder &

network bandwidth

runs on
end-user device

access netw
ork

“la
st-m

ile”

AIMD protocol peers

User-participatory control of video send rates

Mechanism to detect
bandwidth-hogging users,

and evict them from session
f-N .

.

In-network deployment of BAVT-NFV at cloud edges
(prototype on PlanetLab)

Video encode & decode instances,
treated as NFV/SDN functions

[peer modules running on overlay
mirror site device & client device]

CDN overlay distribution
path segment (realized over
a data transport path)

[for asynchronous push of video
chunks from R to mirror sites]

(handle video chunks of
different sizes, based

on allocated bit-rates))

18

cd

R

2
15

9

1

cc

ca cb ce

4

5 12

10 11

13
17

14

7

6

16

8

Video content

always keeps video
chunks up-to-date

3

19

cf

master server
(hosts video content)

cg ch

ci

ca-cj: Client devices
cj

HTTP requests from clients
to pull video content are
directed to these nodes

Video content storage node
serving as mirror site for R,

(with multiple video encoders)

AIMD-level data flow
ingress/egress points

Transport path segment
to carry data flows (say,
UDP or TCP connection)

Video data transport from
content mirror sites & content

rendering at client devices
(over last-mile access links)

local attachment (via access network) NFV/SDN functions that serve as
flow aggregation point peers, to

exercise AIMD-based rate control
on multiple video data flowsNon-participant node & link

