
Kubeflow++
Building an Open Source Data Science Platform

 @joerg_schad

Continuous Integration

Monitoring & Operations

Distributed Data
Storage and
Streaming

Data Preparation
and Analysis

Storage of trained
Models and
Metadata

Use trained Model
for Inference

Distributed
Training using

Machine Learning
Frameworks

Data & Streaming Model
Engineering

Model
Management Model ServingModel

Training

Resource and Service Management

TensorBoard

Model Library

Feature Catalogue

Jörg Schad

Technical Lead/Engineer
Deep Learning

● Core Mesos

developer at
Mesosphere

● Twitter:
@joerg_schad

Why is machine learning taking off?

6

7

CONFIDENTIAL

9

What you want to be doing

10

Get
Data Write intelligent machine learning code Train

Model
Run
Model

Repeat

11

Sculley, D., Holt, G., Golovin, D. et al. Hidden Technical Debt in Machine Learning Systems

What you’re actually doing

1. Data Preparation
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving

Kubeflow

13

The Kubeflow project is dedicated to making
deployments of machine learning (ML) workflows on
Kubernetes simple, portable and scalable.

https://www.kubeflow.org/docs/about/kubeflow/

14

TFX: A TensorFlow-Based Production-Scale Machine
Learning Platform

https://www.youtube.com/watch?v=fPTwLVCq00U

http://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform

https://www.youtube.com/watch?v=fPTwLVCq00U
http://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform

Hyperparameter
Optimization

1. Data Preparation
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving

1. Data Preparation using
Spark

7. Streaming of requests

...

Public Cloud Pipeline

1. Data Preparation
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving

1. Data Preparation using
Spark

7. Kafka stream of
requests

DIY Open Source Pipeline

1. Data Preparation
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving

Continuous Integration

Monitoring & Operations

Distributed Data
Storage and
Streaming

Data Preparation
and Analysis

Storage of trained
Models and
Metadata

Use trained Model
for Inference

Distributed
Training using

Machine Learning
Frameworks

Data & Streaming Model
Engineering

Model
Management Model ServingModel

Training

Resource and Service Management

TensorBoard

Model Library

Feature Catalogue

19

Challenge: Persona(s)

20Division of Labor

Configuration

Machine
Resource

Management
and

Monitoring

Serving
Infrastructure

Data Collection

Data Verification

Process Management
Tools

Feature
Extraction

ML Analysis Tools

Model
Monitoring

Inspired by “Sculley, D., Holt, G., Golovin, D. et al. Hidden Technical Debt in Machine Learning
Systems” article

System Admin/ DevOps

Data Engineer/DataOps

Data Scientist

The Rise of the DataOps Engineer

Combines two key skills:

- Data science
- Distributed systems engineering

The equivalent of DevOps for Data Science

21

22

Do we need Data Science Engineering
Principles?

23

Software Engineering
The application of a systematic, disciplined,
quantifiable approach to the development,
operation, and maintenance of software
IEEE Standard Glossary of Software Engineering
Terminology

Do we need Data Science Engineering
Principles?

24

Software Engineering
The application of a systematic, disciplined,
quantifiable approach to the development,
operation, and maintenance of software
IEEE Standard Glossary of Software Engineering
Terminology

25

• Do I need Machine Learning? *
• Do I need {Neural Networks, Regression,...}*

• What dataset(s)?
– Quality?

• What target/serving environment?
• What model architecture?
• Pre-trained model available?
• How many training resources?

* Can I actually use ...

Challenge: Requirements Engineering

26

• Many adhocs model/training runs
• Regulatory Requirements
• Dependencies
• CI/CD
• Git

 Challenge: Reproducible Builds

Step 1: Training
(In Data Center - Over Hours/Days/Weeks)

Dog

Input:
Lots of Labeled

Data

Output:
Trained Model

Deep neural
network model

27

MFlow

28

 Challenge: Automation & CI/CD

29

MFlow Tracking

import mlflow

Log parameters (key-value pairs)

mlflow.log_param("num_dimensions", 8)

mlflow.log_param("regularization", 0.1)

Log a metric;

mlflow.log_metric("accuracy", 0.1)

...

mlflow.log_metric("accuracy", 0.45)

Log artifacts (output files)

mlflow.log_artifact("roc.png")

mlflow.log_artifact("model.pkl")

30

MFlow Project

name: My Project

conda_env: conda.yaml

entry_points:

 main:

 parameters:

 data_file: path

 regularization: {type: float, default:

0.1}

 command: "python train.py -r

{regularization} {data_file}"

 validate:

 parameters:

 data_file: path

 command: "python validate.py {data_file}"

$mlflow run example/project -P alpha=0.5

$mlflow run git@github.com:databricks/mlflow-example.git

31

MFlow Model

time_created: 2018-02-21T13:21:34.12

flavors:

 sklearn:

 sklearn_version: 0.19.1

 pickled_model: model.pkl

 python_function:

 loader_module: mlflow.sklearn

 pickled_model: model.pkl

$mlflow run example/project -P alpha=0.5

$mlflow run git@github.com:databricks/mlflow-example.git

32

Challenge: Data Science IDE

33

Challenge: Data Quality

• Data is typically not ready to be
consumed by ML job*
– Data Cleaning

• Missing/incorrect labels

– Data Preparation
• Same Format
• Same Distribution

* Demo datasets are a fortunate exception :)

34

Challenge: Data Quality

• Data is typically not ready to be
consumed by ML job*
– Data Cleaning

• Missing/incorrect labels

– Data Preparation
• Same Format
• Same Distribution

* Demo datasets are a fortunate exception :)

Don’t forget about the
serving environment!!

35

Challenge: Data (Preprocessing) Sharing

Feature Catalogue

Data & Streaming Model
Engineering

Model
Training

• Preprocessed Data Sets valuable
– Sharing
– Automatic Updating

• Feature Catalogue ⩬
Preprocessing Cache + Discovery

https://eng.uber.com/michelangelo/

36

Challenge: Model Libraries

• Existing architectures
• Pretrained models

37

Challenge: Writing Distributed Model Functions

38

Challenge: Debugging

https://www.tensorflow.org/programmers_guide/debugger

39

Profiling

https://www.tensorflow.org/performance/performance_guide

• Crucial when using “expensive”
devices

• Memory Access Pattern
• “Secret knowledge”
• More is not necessarily better....

40

Hyperparameter Optimization

Step 1: Training
(In Data Center - Over Hours/Days/Weeks)

Dog

Input:
Lots of Labeled

Data

Output:
Trained Model

Deep neural
network model

https://towardsdatascience.com/understanding-hyperparameters-and-its-op
timisation-techniques-f0debba07568

● Networks Shape
● Learning Rate
● ...

41

Model Optimization

42

Model Optimization

43

Challenge: Monitoring

• Understand {...}
• Debug
• Model Quality

– Accuracy
– Training Time
– …

• Overall Architecture
– Availability
– Latencies
– ...

• TensorBoard

• Traditional Cluster Monitoring
Tool

44

Challenge: Serving Environment

• How to Deploy Models?
– Zero Downtime
– Canary

• Multiple Models?
– Testing

https://ai.googleblog.com/2016/02/running-your-models-in-
production-with.html

https://ai.googleblog.com/2016/02/running-your-models-in-production-with.html
https://ai.googleblog.com/2016/02/running-your-models-in-production-with.html

45

Challenge: Serving Environment

• How to Deploy Models?
– Zero Downtime
– Canary

• Multiple Models?
– Testing

https://mapr.com/ebooks/machine-learning-logistics/ch03.html

https://mapr.com/ebooks/machine-learning-logistics/ch03.html

46

Challenge: Distributed TensorFlow

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute

https://eng.uber.com/horovod/

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute
https://eng.uber.com/horovod/

47

Challenge: Distributed TensorFlow

https://eng.uber.com/horovod/

https://eng.uber.com/horovod/

48

Horovod

https://eng.uber.com/horovod/

• All-Reduce to update
Parameter
– Bandwidth Optimal

• Uber Horovod is MPI based
– Difficult to set up
– Other Spark based

implementations

• Wait for TensorFlow 2.0 ;)

https://eng.uber.com/horovod/
http://www.cs.fsu.edu/~xyuan/paper/09jpdc.pdf
https://hops.readthedocs.io/en/latest/user_guide/tensorflow/horovod.html
https://hops.readthedocs.io/en/latest/user_guide/tensorflow/horovod.html
https://www.tensorflow.org/community/roadmap

49

TF Distribution Strategy

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute

● MirroredStrategy: This does in-graph replication with synchronous training on many GPUs on one machine. Essentially, we
create copies of all variables in the model's layers on each device. We then use all-reduce to combine gradients across the
devices before applying them to the variables to keep them in sync.

● CollectiveAllReduceStrategy: This is a version of MirroredStrategy for multi-working training. It uses a collective op to do
all-reduce. This supports between-graph communication and synchronization, and delegates the specifics of the all-reduce
implementation to the runtime (as opposed to encoding it in the graph). This allows it to perform optimizations like batching
and switch between plugins that support different hardware or algorithms. In the future, this strategy will implement
fault-tolerance to allow training to continue when there is worker failure.

● ParameterServerStrategy: This strategy supports using parameter servers either for multi-GPU local training or
asynchronous multi-machine training. When used to train locally, variables are not mirrored, instead they placed on the
CPU and operations are replicated across all local GPUs. In a multi-machine setting, some are designated as workers and
some as parameter servers. Each variable is placed on one parameter server. Computation operations are replicated
across all GPUs of the workers.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/MirroredStrategy
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/CollectiveAllReduceStrategy
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/ParameterServerStrategy

50

Challenge: Resource and Service Management

• Different Distributed Systems
– Deployment
– Updates
– Failure Recovery
– Scaling

• Resource Efficiency
– Multiple VM per Service?

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Jupyter

Jenkins

HDFS

Spark

TensorFlow

Continuous Integration

Monitoring & Operations

Distributed Data
Storage and
Streaming

Data Preparation
and Analysis

Storage of trained
Models and
Metadata

Use trained Model
for Inference

Distributed
Training using

Machine Learning
Frameworks

Data & Streaming Model
Engineering

Model
Management Model ServingModel

Training

Resource and Service Management

TensorBoard

Model Library

Feature Catalogue

© 2018 Mesosphere, Inc. All Rights Reserved. 52

THANK YOU!

ANY
QUESTIONS?

@mesosphere

https://mesosphere.com/resources/building-data-science-platform/

https://mesosphere.com/resources/building-data-science-platform/

CONFIDENTIAL

Make it insanely easy
to build and scale

world-changing technology

