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Why is machine learning taking off?
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What you want to be doing
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Get 
Data Write intelligent machine learning code Train 

Model
Run
Model

Repeat
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Sculley, D., Holt, G., Golovin, D. et al. Hidden Technical Debt in Machine Learning Systems

What you’re actually doing



1. Data Preparation 
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving



Kubeflow
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The Kubeflow project is dedicated to making 
deployments of machine learning (ML) workflows on 
Kubernetes simple, portable and scalable. 

https://www.kubeflow.org/docs/about/kubeflow/
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TFX: A TensorFlow-Based Production-Scale Machine 
Learning Platform

https://www.youtube.com/watch?v=fPTwLVCq00U

http://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform

https://www.youtube.com/watch?v=fPTwLVCq00U
http://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform


Hyperparameter 
Optimization

1. Data Preparation 
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving



1. Data Preparation using 
Spark 

7. Streaming of requests

...

Public Cloud Pipeline

1. Data Preparation 
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving



1. Data Preparation using 
Spark 

7. Kafka stream of 
requests

DIY Open Source Pipeline

1. Data Preparation 
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving
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Challenge: Persona(s)



20Division of Labor 

Configuration

Machine 
Resource 

Management
and

Monitoring

Serving 
Infrastructure

Data Collection

Data Verification

Process Management 
Tools

Feature 
Extraction

ML Analysis Tools

Model 
Monitoring

Inspired by “Sculley, D., Holt, G., Golovin, D. et al. Hidden Technical Debt in Machine Learning 
Systems” article

System Admin/ DevOps

Data Engineer/DataOps

Data Scientist



The Rise of the DataOps Engineer

Combines two key skills:

- Data science
- Distributed systems engineering

The equivalent of DevOps for Data Science
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Do we need Data Science Engineering 
Principles?

23

Software Engineering
The application of a systematic, disciplined, 
quantifiable approach to the development, 
operation, and maintenance of software
IEEE Standard Glossary of Software Engineering 
Terminology



Do we need Data Science Engineering 
Principles?
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Software Engineering
The application of a systematic, disciplined, 
quantifiable approach to the development, 
operation, and maintenance of software
IEEE Standard Glossary of Software Engineering 
Terminology
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• Do I need Machine Learning? *
• Do I need {Neural Networks, Regression,...}*

• What dataset(s)?
– Quality?

• What target/serving environment?
• What model architecture?
• Pre-trained model available?
• How many training resources?

* Can I actually use ...

Challenge: Requirements Engineering
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• Many adhocs model/training runs
• Regulatory Requirements
• Dependencies
• CI/CD 
• Git

 Challenge: Reproducible Builds

Step 1: Training
(In Data Center - Over Hours/Days/Weeks)

Dog

Input:
Lots of Labeled 

Data

Output:
Trained Model

Deep neural 
network model
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MFlow 
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 Challenge: Automation & CI/CD
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MFlow Tracking 

import mlflow

# Log parameters (key-value pairs)

mlflow.log_param("num_dimensions", 8)

mlflow.log_param("regularization", 0.1)

# Log a metric;

mlflow.log_metric("accuracy", 0.1)

...

mlflow.log_metric("accuracy", 0.45)

# Log artifacts (output files)

mlflow.log_artifact("roc.png")

mlflow.log_artifact("model.pkl")
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MFlow Project 

name: My Project

conda_env: conda.yaml

entry_points:

  main:

    parameters:

      data_file: path

      regularization: {type: float, default: 

0.1}

    command: "python train.py -r 

{regularization} {data_file}"

  validate:

    parameters:

      data_file: path

    command: "python validate.py {data_file}"

$mlflow run example/project -P alpha=0.5

$mlflow run git@github.com:databricks/mlflow-example.git 
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MFlow Model 

time_created: 2018-02-21T13:21:34.12

flavors:

  sklearn:

    sklearn_version: 0.19.1

    pickled_model: model.pkl

  python_function:

    loader_module: mlflow.sklearn

    pickled_model: model.pkl

$mlflow run example/project -P alpha=0.5

$mlflow run git@github.com:databricks/mlflow-example.git 
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Challenge: Data Science IDE
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Challenge: Data Quality

• Data is typically not ready to be 
consumed by ML job*
– Data Cleaning

• Missing/incorrect labels

– Data Preparation
• Same Format
• Same Distribution

* Demo datasets are a fortunate exception :)
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Challenge: Data Quality

• Data is typically not ready to be 
consumed by ML job*
– Data Cleaning

• Missing/incorrect labels

– Data Preparation
• Same Format
• Same Distribution

* Demo datasets are a fortunate exception :)

Don’t forget about the 
serving environment!!



35

Challenge: Data (Preprocessing) Sharing

Feature Catalogue 

Data & Streaming Model 
Engineering

Model 
Training 

• Preprocessed Data Sets valuable
– Sharing
– Automatic Updating

• Feature Catalogue ⩬ 
Preprocessing Cache + Discovery 

https://eng.uber.com/michelangelo/
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Challenge: Model Libraries

• Existing architectures
• Pretrained models
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Challenge: Writing Distributed Model Functions
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Challenge: Debugging 

https://www.tensorflow.org/programmers_guide/debugger
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Profiling 

https://www.tensorflow.org/performance/performance_guide

• Crucial when using “expensive” 
devices

• Memory Access Pattern
• “Secret knowledge”
• More is not necessarily better....
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Hyperparameter Optimization 

Step 1: Training
(In Data Center - Over Hours/Days/Weeks)

Dog

Input:
Lots of Labeled 

Data

Output:
Trained Model

Deep neural 
network model

https://towardsdatascience.com/understanding-hyperparameters-and-its-op
timisation-techniques-f0debba07568

● Networks Shape
● Learning Rate
● ...
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Model Optimization
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Model Optimization
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Challenge: Monitoring

• Understand {...}
• Debug
• Model Quality

– Accuracy
– Training Time
– …

• Overall Architecture
– Availability 
– Latencies
– ...

• TensorBoard

• Traditional Cluster Monitoring 
Tool
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Challenge: Serving Environment

• How to Deploy Models?
– Zero Downtime
– Canary

• Multiple Models?
– Testing

https://ai.googleblog.com/2016/02/running-your-models-in-
production-with.html

https://ai.googleblog.com/2016/02/running-your-models-in-production-with.html
https://ai.googleblog.com/2016/02/running-your-models-in-production-with.html
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Challenge: Serving Environment

• How to Deploy Models?
– Zero Downtime
– Canary

• Multiple Models?
– Testing

https://mapr.com/ebooks/machine-learning-logistics/ch03.html

https://mapr.com/ebooks/machine-learning-logistics/ch03.html
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Challenge: Distributed TensorFlow

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute

https://eng.uber.com/horovod/

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute
https://eng.uber.com/horovod/
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Challenge: Distributed TensorFlow

https://eng.uber.com/horovod/

https://eng.uber.com/horovod/
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Horovod

https://eng.uber.com/horovod/

• All-Reduce to update 
Parameter 
– Bandwidth Optimal

• Uber Horovod is MPI based
– Difficult to set up 
– Other Spark based 

implementations

• Wait for TensorFlow 2.0 ;)

 

https://eng.uber.com/horovod/
http://www.cs.fsu.edu/~xyuan/paper/09jpdc.pdf
https://hops.readthedocs.io/en/latest/user_guide/tensorflow/horovod.html
https://hops.readthedocs.io/en/latest/user_guide/tensorflow/horovod.html
https://www.tensorflow.org/community/roadmap
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TF Distribution Strategy

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute

● MirroredStrategy: This does in-graph replication with synchronous training on many GPUs on one machine. Essentially, we 
create copies of all variables in the model's layers on each device. We then use all-reduce to combine gradients across the 
devices before applying them to the variables to keep them in sync.

● CollectiveAllReduceStrategy: This is a version of MirroredStrategy for multi-working training. It uses a collective op to do 
all-reduce. This supports between-graph communication and synchronization, and delegates the specifics of the all-reduce 
implementation to the runtime (as opposed to encoding it in the graph). This allows it to perform optimizations like batching 
and switch between plugins that support different hardware or algorithms. In the future, this strategy will implement 
fault-tolerance to allow training to continue when there is worker failure.

● ParameterServerStrategy: This strategy supports using parameter servers either for multi-GPU local training or 
asynchronous multi-machine training. When used to train locally, variables are not mirrored, instead they placed on the 
CPU and operations are replicated across all local GPUs. In a multi-machine setting, some are designated as workers and 
some as parameter servers. Each variable is placed on one parameter server. Computation operations are replicated 
across all GPUs of the workers.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/MirroredStrategy
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/CollectiveAllReduceStrategy
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/ParameterServerStrategy
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Challenge: Resource and Service Management 

• Different Distributed Systems
– Deployment
– Updates
– Failure Recovery
– Scaling

• Resource Efficiency
– Multiple VM per Service?

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Jupyter

Jenkins

HDFS

Spark

TensorFlow
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THANK YOU!

ANY 
QUESTIONS?

@mesosphere

https://mesosphere.com/resources/building-data-science-platform/

https://mesosphere.com/resources/building-data-science-platform/
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Make it insanely easy 
to build and scale

world-changing technology


