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Extending the Berkeley Packet Filter
● Historically Berkeley Packet Filter 

provided a means to filter network 
packets

○ If you ever used tcpdump you’ve probably 
already used it

○ tcpdump host helios and \( hot or ace \)

● eBPF has extended BPF hugely:
○ Re-encoded and more expressive 

opcodes
○ Multiple new hook points within the kernel 

to attach eBPF programs to
○ Rich data structures to pass information 

to/from kernel
○ C functional call interface (an eBPF 

program can call kernel function)

Framework of eBPF

ply‘raw’ 
building BCC

eBPF 
verifier

eBPF core eBPF map
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Using eBPF for debugging

Userspace Kernel

Program

Update data maps

foo_kern.c

Load program

Read data maps

foo_user.c

foo_kern.o

LLVM/clang

eBPF maps

eBPF bytecode

eBPF

JIT

kprobes/ftrace

Program working flow Data transferring flow

eBPF func
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Using eBPF for debugging - cont.
● eBPF program is written in C code and compiled to eBPF bytecode

○ LLVM/clang provides us a eBPF compiler (no support in gcc)

○ Direct code generation is also possible (or LLVM without clang)

● eBPF program is loaded inside eBPF virtual machine with sanity-checking
● eBPF program is "attached" to a designated code path in the kernel

○ eBPF in its traditional use case is attached to networking hooks allowing it to filter and classify 
network traffic using (almost) arbitrarily complex programs

○ Furthermore, we can attach eBPF programs to tracepoints, kprobes, and perf events for 
debugging the kernel and carrying out performance analysis.

● Kernel and user space typically use eBPF map; it is a generic data structure 
well suited to transfer data from kernel to userspace
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Debugging with eBPF versus tracing
Tracing is very powerful but it can also be 
cumbersome for whole system analysis due 
to the volume of trace information generated.

Most developers end up writing programs to 
summarize the trace.

eBPF allows us to write program to 
summarize trace information without tracing.

Kernel trace 
events

trace-cmd

Without eBPF

Buffers

Event 
processing

Frequent kernel and user space 
context switching

Kernel trace 
events

Kernel 
eBPF 

program

With eBPF

User space 
statistics 
program

Huge buffer size to avoid 
tracing data overflow

Seldom kernel and user space 
context switching
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Introducing the VM
● Instruction set architecture (ISA)
● Verifier
● Maps
● Just-in-time compilation



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

eBPF bytecode instruction set architecture (ISA)

Uses a simple RISC-like instruction set. It 
is intentionally easy to map eBPF 
program to native instructions (especially 
on RISC machines).

10 general purpose 64-bit registers and 
one register for frame pointer, maps 1:1 
to registers on many 64-bit architectures.

Every instruction is 64-bit, the eBPF 
program can contain a maximum of 4096 
instructions.

eBPF Register Description

R0 Return value from in-kernel function, 
and exit value for eBPF program

R1 ~ R5 Arguments from eBPF program to 
in-kernel function

R6 ~ R9 Callee saved registers that in-kernel 
function will preserve

R10 Read-only frame pointer to access 
stack
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Instruction encoding

Three instruction types:
ALU instructions
memory instructions
branch instructions

New BPF_CALL instruction made 
it possible to call in-kernel 
functions cheaply.

32 bits
immediate

16 bits
offset

4 bits
src

4 bits
dst

8 bits
opcode

LSBMSB

Opcode for arithmetic and jump instructions

4 bits
operation code

1 bit
source

3 bits
instruction class

Opcode for memory instructions

3 bits
mode

2 bits
size

3 bits
instruction class
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Just-in-time compilation (JIT)

eBPF 
Register

Aarch64 
Register

Description

R0 X7 Return value from in-kernel 
function, and exit value for 
eBPF program

R1 ~ R5 X0 ~ X4 Arguments from eBPF 
program to in-kernel 
function

R6 ~ R9 X19 ~ X22 Callee saved registers that 
in-kernel function will 
preserve

R10 X25 Read-only frame pointer to 
access stack

Just-in-time (JIT) compiler translates eBPF 
bytecode into a host system's assembly 
code and speed up program execution. For 
most opcodes there is a 1:1 mapping 
between eBPF and AArch64 instructions.

ARM/ARM64 JIT is enabled by kernel config: 
CONFIG_BPF_JIT.

ARM/ARM64 JIT complies with Procedure 
Call Standard for the ARM® Architecture 
(AAPCS) to map eBPF registers to machine 
registers and build prologue/epilogue for 
function entry and exit.  
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Verifier
● eBPF programs are loaded from user space but will run in kernel space; the eBPF verifier 

checks that the program is safe to run before invoking it 
● Checks that the program license is GNU GPL and, for kprobes, also the kernel version
● Function call verification

○ Allows function calls from one bpf function to another
○ Only calls to known functions are allowed
○ Unresolved function calls and dynamic linking are not permitted

● Check that control flow graph of eBPF program is a directed acyclic graph
○ Used to disallow loops to ensure the program don’t cause the kernel to lock up
○ Detect unreachable instructions
○ Program terminates with BPF_EXIT instruction
○ All branch instructions except for BPF_EXIT or BPF_CALL instructions are within program 

boundary

● Simulates execution of every instructions and observes the state change of registers and 
stack
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Control flow graph (CFG) to detect loop

BPF_MOV64_REG(BPF_REG_1, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0)
BPF_JMP_IMM(BPF_JA, 0, 0, -4)
BPF_EXIT_INSN()

Example 1: detect back edge for loop.

BPF_MOV64_REG(BPF_REG_1, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0)
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3)
BPF_EXIT_INSN()

Example 2: detect back edge for conditional loop.
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The state change of registers and stack

The verifier tracks register state and monitors the 
usage for stack:

● Registers with uninitialized contents cannot be read.
● After a kernel function call, R1-R5 are reset to 

unreadable and R0 has a return type of the function.
● Since R6-R9 are callee saved, their state is 

preserved across the call.
● load/store instructions are allowed only with 

registers of valid types, which are PTR_TO_CTX, 
PTR_TO_MAP, PTR_TO_STACK and verify if out of 
bound.

● Allow eBPF program to read data from stack only if 
it wrote into it.

BPF_MOV64_REG(BPF_REG_2, BPF_REG_10)
BPF_LDX_MEM(BPF_DW, BPF_REG_0, 
BPF_REG_2, -8)
BPF_EXIT_INSN()

BPF_MOV64_REG(BPF_REG_0, BPF_REG_2)
BPF_EXIT_INSN()

Example 1: Registers with uninitialized 
contents cannot be read.

Example 2: Allow eBPF program to read 
data from stack only after it wrote into it.
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Maps
● eBPF uses map as generic key/value data structure for data transfer 

between Kernel and user space
● The maps are managed by using file descriptor and they are accessed from 

user space via BPF syscall:
○ bpf(BPF_MAP_CREATE, attr, size): create a map with given type and attributes
○ bpf(BPF_MAP_LOOKUP_ELEM, attr, size): lookup key in a given map
○ bpf(BPF_MAP_UPDATE_ELEM, attr, size): create or update key/value pair in a given map
○ bpf(BPF_MAP_DELETE_ELEM, attr, size): find and delete element by key in a given map
○ close(fd): delete map

● eBPF programs can use map file descriptors of the process that loaded the 
program.

● When the userspace generates an eBPF program the file descriptors will 
embedded into immediate values of the appropriate opcode.
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Access map in Kernel space

fd 0 P DST
BPF_LD |
BPF_DW |
BPF_IMM

0 0 0 0 0

opcodedstsrcoffimm

The ‘imm’ field is set to file descriptor and ‘src’ field = 
BPF_PSEUDO_MAP_FD to indicate this is a pseudo instruction 
for loading map data.  BPF_LD_MAP_FD() macro is used for 
instruction assembly.  Because ‘src’ is non-zero so the 
opcode is invalid at this stage.

Map accessing instruction opcode is ‘BPF_LD | BPF_DW | 
BPF_IMM’, which means "load 64-bit (Double Word) 
immediate"; the instruction is to combine the two ‘imm’ fields 
of this instruction and the subsequent one for ‘DST’ register.

map 0 0 DST
BPF_LD |
BPF_DW |
BPF_IMM

map >> 32 0 0 0 0

opcodedstsrcoffimm

The invalid opcode is fixed up during programing loading 
bpf_prog_load().  At this stage the ‘fd’ will be replaced 
with a map pointer that can be used as an argument during a 
BPF_CALL.
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Coding for eBPF in assembler
● Before introducing the high level tools let’s look at a 

simple userspace program (in C) that runs an eBPF 
program

● It is not very common to write eBPF programs in 
assembler

○ Writing in assembler allows us to explore the syscalls that hold 
everything together

○ We’ll look at the higher level tools in a moment
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libbpf: helper functions for eBPF
libbpf library makes easier to write eBPF programs, 
which includes helper functions for loading eBPF 
programs from kernel space to user space and 
creating and manipulating eBPF maps:

● User program reads the eBPF bytecode into a 
buffer and pass it to bpf_load_program() 
for program loading and verification.

● The eBPF program includes the libbpf header 
for the function definition for building, when run 
by the kernel, will call 
bpf_map_lookup_elem() to find an element 
in a map and store a new value in it.

● The user application calls 
bpf_map_lookup_elem() to read out the 
value stored by the eBPF program in the kernel.

int bpf_map_lookup_elem(int fd, const void *key,
                        void *value)
{
        union bpf_attr attr;

        bzero(&attr, sizeof(attr));
        attr.map_fd = fd; 
        attr.key = ptr_to_u64(key);
        attr.value = ptr_to_u64(value);

        return sys_bpf(BPF_MAP_LOOKUP_ELEM, &attr,
                       sizeof(attr));
}
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Coding for eBPF in assembler
The example is ~50 lines of code for eBPF 
in assembler; it demonstrates the eBPF 
code have components: eBPF bytecode, 
syscalls, maps.

attach_kprobe() is used to enable 
kprobe event and attach the event with 
eBPF program.

void attach_kprobe(void)
{
    system("echo 'p:sys_read sys_read' >> \
                   /sys/kernel/debug/tracing/kprobe_events")

    efd = open(“/sys/kernel/debug/tracing/events/kprobes/sys_read/id”, 
               O_RDONLY, 0);
    read(efd, buf, sizeof(buf));
    close(efd);

    buf[err] = 0;
    id = atoi(buf);
    attr.config = id;

    efd = sys_perf_event_open(&attr, -1/*pid*/, 0/*cpu*/, -1, 0);
    ioctl(efd, PERF_EVENT_IOC_ENABLE, 0);
    ioctl(efd, PERF_EVENT_IOC_SET_BPF, pfd);
}

int main(void)

{

        int map_fd, i, key;

        long long value = 0, cnt;

        map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key), sizeof(value), 5000, 0);

        struct bpf_insn prog[] = {

                BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),

                BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

                BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4), /* *(u32 *)(fp - 4) = r0 */

                BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),

                BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = fp - 4 */

                BPF_LD_MAP_FD(BPF_REG_1, map_fd),

                BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),

                BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

                BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */

                BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0), /* xadd r0 += r1 */

                BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

                BPF_EXIT_INSN(),

        };

        size_t insns_cnt = sizeof(prog) / sizeof(struct bpf_insn);

        pfd = bpf_load_program(BPF_PROG_TYPE_KPROBE, prog, insns_cnt, "GPL",

                               LINUX_VERSION_CODE, bpf_log_buf, BPF_LOG_BUF_SIZE);

        attach_kprobe();

        sleep(1);

        key = 0;

        assert(bpf_map_lookup_elem(map_fd, &key, &cnt) == 0);

        printf("sys_read counts %lld\n", cnt);

        return 0;

}
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eBPF tooling
● Kernel examples
● Ply
● bcc
● SystemTap (stapbpf)
● ...
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Kernel samples
It’s good to start from eBPF kernel samples; Linux kernel tree 
provides eBPF system call wrapper functions in lib libbpf; the 
samples use bpf_load.c to create map and load kernel 
program, attach trace point.

Kernel and user space programs use the naming convention 
xxx_user.c and xxx_kern.c, and the user space program to 
use file name xxx_kern.o to search kernel program.

The user space program is compiled by GCC for executable file 
and it reacts for ‘CROSS_COMPILE=aarch64-linux-gnu-’ for 
cross compiling. Kernel program is compiled by LLVM/Clang, by 
default it uses LLVM/Clang in distro and can specify path for 
new built LLVM/Clang.  Build commands:
make headers_install  # creates "usr/include" directory in the build top directory

make samples/bpf/ LLC=xxx/llc CLANG=xxx/clang

sample_kern.o

sample_user.o

libbpf

bpf_load.o

sample

Kernel 
program

Program loading

Data 
transferring
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Sample code: trace kmem_cache_alloc_node

struct bpf_map_def SEC("maps") my_map = { 
        .type = BPF_MAP_TYPE_HASH,
        .key_size = sizeof(long),
        .value_size = sizeof(struct pair),
        .max_entries = 1000000,
};

SEC("kretprobe/kmem_cache_alloc_node")
int bpf_prog2(struct pt_regs *ctx)
{
        long ptr = PT_REGS_RC(ctx);
        long ip = 0;

        /* get ip address of kmem_cache_alloc_node() caller */
        BPF_KRETPROBE_READ_RET_IP(ip, ctx);

        struct pair v = { 
                .val = bpf_ktime_get_ns(),
                .ip = ip, 
        };

        bpf_map_update_elem(&my_map, &ptr, &v, BPF_ANY);
        return 0;
}
char _license[] SEC("license") = "GPL";
u32 _version SEC("version") = LINUX_VERSION_CODE;

static void print_old_objects(int fd) 
{
        long long val = time_get_ns();
        __u64 key, next_key;
        struct pair v;

        /* Based on current ‘key’ value, we can get next key value
         * and iterate all bpf map elements. */
        key = -1; 
        while (bpf_map_get_next_key(map_fd[0], &key, &next_key) == 0) {
                bpf_map_lookup_elem(map_fd[0], &next_key, &v);
                key = next_key;
                printf("obj 0x%llx is %2lldsec old was allocated at ip %llx\n",
                       next_key, (val - v.val) / 1000000000ll, v.ip);
        }
}

int main(int ac, char **argv)
{
        char filename[256];
        int i;

        snprintf(filename, sizeof(filename), "%s_kern.o", argv[0]);

        if (load_bpf_file(filename)) {
                printf("%s", bpf_log_buf);
                return 1;
        }

        for (i = 0; ; i++) {
                print_old_objects(map_fd[1]);
                sleep(1);
        }

        return 0;
}

tracex4_user.ctracex4_kern.c

Step 1: load kernel program & 
enable kretprobe trace point

Step 2: kernel program 
update map data

Step 3: user space program 
reads map data
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Ply: light dynamic tracer for eBPF

Ply uses an awk-like mini language describing how 
to attach eBPF programs to tracepoints and 
kprobes. It has a built-in compiler and can perform 
compilation and execution with a single command.

Ply can extract arbitrary data, i.e register values, 
function arguments, stack/heap data, stack traces.

Ply keeps dependencies to a minimum, leaving libc 
as the only runtime dependency. Thus, ply is well 
suited for embedded targets.

https://wkz.github.io/ply/

trace:raw_syscalls/sys_exit / (ret() < 0) /
{
        @[comm()].count()
}

^Cde-activating probes

@:
dbus-daemon                    2
ply                            3
irqbalance                     4

https://wkz.github.io/ply/
https://wkz.github.io/ply/
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System call (sys_exit) failure statistics in ply

trace:raw_syscalls/sys_exit / (ret() < 0) /
{
        @[comm()].count()
}

^Cde-activating probes

@:
dbus-daemon                    2
ply                            3
irqbalance                     4

predicate: filter events to match criteria

probe definition: the point(s) of instrumentation

provider: selects which probe interface to use

@: sign of map

Key value

method: common way is to aggregate data using methods, have two 
functions: .count() and .quantize()

Tracing result: task name + counts
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Build ply
If applicable, please check build: Fix kernel header installation on ARM64 is in 
your repository before building.

Method 1: Native compilation
   ./autogen.sh
  ./configure --with-kerneldir=/path/to/linux
  make
  make install

Method 2: Cross-Compilation for arm64

   ./autogen.sh
  ./configure --host=aarch64 --with-kerneldir=/path/to/linux
  make CC=aarch64-linux-gnu-gcc
  # copy src/ply to target board

https://github.com/iovisor/ply

$ ldd src/ply
linux-vdso.so.1 (0x0000ffff9320d000)        
libc.so.6 => 
/lib/aarch64-linux-gnu/libc.so.6 
(0x0000ffff93028000)
/lib/ld-linux-aarch64.so.1 
(0x0000ffff931e2000)

https://github.com/iovisor/ply/pull/42/commits/74fda9a5ee48ad7e356318ff2584ed6cd6c7b5d1
https://github.com/iovisor/ply
https://github.com/iovisor/ply


LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

BPF Compiler Collection (BCC)
BPF compiler collection (BCC) project is a toolchain 
which reduces the difficulty for writing, compiling 
(invokes LLVM/Clang) and loading eBPF programs.
BCC reports errors for mistake for compiling, loading 
program, etc; this reduces difficulty for eBPF 
programming. 

For writing short and expressive programs, high-level 
languages are available in BCC (python, Lua, go, etc).

BCC provides scripts that use User Statically-Defined 
Tracing (USDT) probes to place tracepoints in 
user-space code; these are probes that are inserted into 
user applications statically at compile-time.

BCC includes an impressive collection of examples and 
ready-to-use tracing tools.

User space Kernel

Python

Lua

Front-end
libbcc.so

libbpf.so

Back-end 

eBPF maps

eBPF 
bytecode

eBPF

kprobes/
ftrace

C / C++

golang

bcc-tool

LLVM/
clangCompiling

Load program & read data

Trace and probe ops

BPF Compiler Collection (BCC)

Program working flow

Data transferring flow
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BCC example code
b = BPF(text="""

struct key_t {
  u32 prev_pid, curr_pid;
};

BPF_HASH(stats, struct key_t, u64, 1024);
int count_sched(struct pt_regs *ctx, struct task_struct *prev) {
  struct key_t key = {};
  u64 zero = 0, *val;

  key.curr_pid = bpf_get_current_pid_tgid();
  key.prev_pid = prev->pid;

  val = stats.lookup_or_init(&key, &zero);
  (*val)++;
  return 0;
}
""")

b.attach_kprobe(event="finish_task_switch", fn_name="count_sched")

# generate many schedule events

for i in range(0, 100): sleep(0.01)

for k, v in b["stats"].items():
    print("task_switch[%5d->%5d]=%u" % (k.prev_pid, k.curr_pid, v.value))

Kernel program

Enable kprobe event

Read map data “stats”

https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py

https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py
https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py
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Build BCC
BCC runs on the target but cannot be easily 
cross-compiled. These instructions show how to 
perform a native build (and work on an AArch64 
platform)

Install build dependencies

sudo apt-get install debhelper cmake libelf-dev bison 
flex libedit-dev python python-netaddr python-pyroute2 
arping iperf netperf ethtool devscripts zlib1g-dev 
libfl-dev

Build luajit lib

git clone http://luajit.org/git/luajit-2.0.git
cd luajit-2.0
git checkout -b v2.1 origin/v2.1
make
sudo make install

Build LLVM/Clang

cd where-llvm-live
svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
cd where-llvm-live
cd llvm/tools
svn co http://llvm.org/svn/llvm-project/cfe/trunk clang
cd where-llvm-live
mkdir build (in-tree build is not supported)
cd build
cmake -G "Unix Makefiles" \

-DCMAKE_INSTALL_PREFIX=$PWD/install ../llvm
make; make install

Build BCC

# Use self built LLVM/clang binaries
export PATH=where-llvm-live/build/install/bin:$PATH

git clone https://github.com/iovisor/bcc.git
mkdir bcc/build; cd bcc/build
cmake .. -DCMAKE_INSTALL_PREFIX=/usr
make
sudo make install

https://github.com/iovisor/bcc/blob/master/INSTALL.md

http://luajit.org/git/luajit-2.0.git
http://llvm.org/svn/llvm-project/llvm/trunk
http://llvm.org/svn/llvm-project/cfe/trunk
https://github.com/iovisor/bcc.git
https://github.com/iovisor/bcc/blob/master/INSTALL.md
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BCC and embedded systems
● BCC native build has many dependencies

○ Dependency with libs and binaries, e.g. cmake, luajit lib, etc
○ Most dependencies can be resolved for Debian/Ubuntu by using ‘apt-get’ command
○ BCC depends on LLVM/Clang to compile for eBPF bytecode, but LLVM/Clang itself also 

introduces many dependencies
● BCC and LLVM building requires powerful hardware

○ Have big pressure for both memory and filesystem space
○ Building is impossible or, with swap, extremely slow on systems without sufficient memory 
○ Consumes lots of disk space. For AArch64: BCC needs 12GB, additionally LLVM needs 42GB
○ Even with strong hardware, the compilation process takes a long time
○ Save LLVM and BCC binaries on PC and use them by mounting NFS node :)

● Difficult to deploy BCC on Android system
○ No package manager means almost all library dependencies must be compiled from scratch
○ Android uses bionic C library, which makes it difficult to build libraries that use GNU 

extensions
○ androdeb: https://github.com/joelagnel/adeb 

https://github.com/joelagnel/adeb
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SystemTap - eBPF backend
● SystemTap introduced, stapbpf, an 

eBPF backend in Oct, 2017
○ Joins existing backends:

kernel module and Dyninst

● SystemTap is both the tool and the 
scripting language

○ Language is inspired by awk, and 
predecessor tracers such as DTrace…

○ Uses the familar awk-like structure:
 probe.point { action(s) }

○ Extracts symbolic information based on 
DWARF parsing

# stap --runtime=bpf -v - <<EOF
> probe kernel.function("ksys_read") {
>   printf("ksys_read(%d): %d, %d\n",
>          pid(), $fd, $count);
>   exit();
> }
> EOF
Pass 1: parsed user script and 61 library 
scripts using 
410728virt/101984res/8796shr/93148data kb, in 
260usr/20sys/272real ms.
Pass 2: analyzed script: 1 probe, 2 functions, 
0 embeds, 0 globals using 
468796virt/161004res/9684shr/151216data kb, in 
820usr/10sys/843real ms.
Pass 4: compiled BPF into "stap_10960.bo" in 
10usr/0sys/33real ms.
Pass 5: starting run.
ksys_read(18719): 0, 8191
Pass 5: run completed in 0usr/0sys/30real ms.
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SystemTap - Revenge of the verifier
● eBPF verifier is more aggressive than the SystemTap language

○ Language permits looping but verifier prohibits loops (3.2 did not implement loop unrolling to 
compensate)

○ The 4096 opcode limit restriction also looms
○ $$vars and $$locals cause verification failure if used (likely depends on traced function)
○ This runtime is in an early stage of development and it currently lacks support for a number of 

features available in the default runtime. -- STAPBPF(8)

● SystemTap has a rich library of useful tested examples and war stories
○ Almost all are tested and developed using the kernel module backend
○ Thus it common to find canned examples that only work with the kernel module backend
○ This quickly grows frustrating… so one tends to end up using the default backend
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BPFtrace - high level tracing language for eBPF
HOLD THE PRESS… HOLD THE PRESS...

BPFtrace language is inspired by awk and C, and predecessor tracers such as DTrace and SystemTap. 
Brendan Gregg’s blogged about it: bpftrace (DTrace 2.0) for Linux 2018 (and most of this slide comes from 
that blog post). I picked up from lwn.net (many thanks) three days before my slides were due in ;-)

“Created by Alastair Robertson, bpftrace is an 
open source high-level tracing front-end that 
lets you analyze systems in custom ways. It's 
shaping up to be a DTrace version 2.0: more 
capable, and built from the ground up for the 

modern era of the eBPF virtual machine.”
-- Brendan Gregg

# cat > path.bt <<EOF
#include <linux/path.h>
#include <linux/dcache.h>

kprobe:vfs_open
{
    printf("open path: %s\n",
      str(((path *)arg0)->dentry->d_name.name));
}
EOF
# bpftrace path.bt
Attaching 1 probe...
open path: dev
open path: if_inet6
open path: retrans_time_ms

http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html
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BPFtrace - Internals
Good news: 
bpftrace has 
superpowers

Bad news:
Dependencies 

are inconsistently 
packaged
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Examples
● Report CPU power state
● Who is hammering a library function?
● Hunting leaks
● Debug kernel functions at the runtime
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The story - Report CPU power state

When I run one test case, I want to quickly 
do statistics for CPU frequency so I can get 
to know if CPU frequency can meet the 
performance requirement or not.

We can do this with ‘offline’ mode like 
idlestat tool, but is there any method that can 
display live info?

● The target is to use high efficient method to 
count CPU frequency duration time.

● Kernel has existing trace points to record CPU 
frequency, eBPF kernel program can finish 
simple computation for CPU frequency state 
duration based on these trace points.

● Need to get rid of CPU idle duration from CPU 
frequency time.

● In this example we use tools from the kernel 
samples/bpf/ directory.
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CPU power state statistics with eBPF

T2
T4

WFI

T1

T3

CPU_OFF

OPP0

OPP1 T(pstate-0)    += T1
T(pstate-1)    += T3
T(cstate-0)    += T2
T(cstate-1)    += T4

Kernel program

User space program
    CPU states statistics:
    state(ms)  cstate-0    cstate-1    cstate-2    pstate-0    pstate-1    pstate-2    pstate-3    pstate-4
    CPU-0      767         6111        111863      561         31          756         853         190
    CPU-1      241         10606       107956      484         125         646         990         85
    CPU-2      413         19721       98735       636         84          696         757         89
    CPU-3      84          11711       79989       17516       909         4811        5773        341
    CPU-4      152         19610       98229       444         53          649         708         1283
    CPU-5      185         8781        108697      666         91          671         677         1365
    CPU-6      157         21964       95825       581         67          566         684         1284
    CPU-7      125         15238       102704      398         20          665         786         1197
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The story - Who is hammering a library function?

I did a quick profile and its showing a library 
function dominating one of the cores.
What now?

# ply -t 5 -c ‘kprobe:kmem_cache_alloc_node
 { @[stack()].count() }’
     …

kmem_cache_alloc_node
_do_fork+0xd0
__se_sys_clone+0x4c
el0_svc_naked+0x30       31

kmem_cache_alloc_node
alloc_skb_with_frags+0x70
sock_alloc_send_pskb+0x220
unix_stream_sendmsg+0x1f4
sock_sendmsg+0x60
__sys_sendto+0xd4
__se_sys_sendto+0x50
__sys_trace_return      232
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The story - Hunting leaks

I know I’m leaking memory (or some other 
precious resource) from a particular pool 
whenever I run a particular workload. 
Unfortunately my system is almost ready to 
ship and we’ve started disabling all the 
resource tracking. Is there anything I can do 
to get a clue about what is going on?

# cat track.ply
kprobe:kmem_cache_alloc_node {

# Can’t read stack from a retprobe :-(
@[0] = stack();

}
kretprobe:kmem_cache_alloc_node {

@[retval()] = @[0];
@[0] = nil;

}
kprobe:kmem_cache_free {

@[arg(1)] = nil;
}
# ply -t 1 track.ply
3 probes active
de-activating probes

@:
<leaks show up here>
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The story - Debug kernel functions at the runtime

When I debug CPU frequency change flow 
in kernel, kernel have several different 
components to work together for frequency 
changing, including clock driver, mailbox 
driver, etc.

I want to confirm if the functions have been 
properly called and furthermore to check 
function arguments have expected values.

How can I dynamically debug kernel 
functions at the runtime with high efficiency 
and safe method? 

● SystemTap and Kprobes can be used to debug 
kernel function, but eBPF is safer to deploy 
because the verifier will ensure kernel integrity.

● For kernel functions tracing, eBPF can avoid to 
change kernel code and save time for 
compilation.

● If it’s safe enough, we even can use it in 
production for customer support.

● In this example, we use tools from the bcc 
distribution

Inspired by: BPF: Tracing and More (Brendan Gregg)

https://www.youtube.com/watch?v=JRFNIKUROPE
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Debug kernel functions

$ ./tools/trace.py 'hi3660_stub_clk_set_rate "rate: %d" arg2'
PID     TID     COMM            FUNC             -
2002    2002    kworker/3:2     hi3660_stub_clk_set_rate rate: 1421000000
2469    2469    kworker/3:1     hi3660_stub_clk_set_rate rate: 1421000000
2469    2469    kworker/3:1     hi3660_stub_clk_set_rate rate: 1421000000
84      84      kworker/0:1     hi3660_stub_clk_set_rate rate: 903000000
2469    2469    kworker/3:1     hi3660_stub_clk_set_rate rate: 903000000
84      84      kworker/0:1     hi3660_stub_clk_set_rate rate: 903000000
84      84      kworker/0:1     hi3660_stub_clk_set_rate rate: 903000000
2469    2469    kworker/3:1     hi3660_stub_clk_set_rate rate: 903000000

BCC tools/trace.py can
be used to debug kernel function; this 
tool can trace function with infos: 
kernel or user space stack, timestamp, 
CPU ID, PID/TID.

We can use tool trace.py to confirm 
function hi3660_stub_clk_set_rate() 
has been invoked and print out the 
target frequency.

static int hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
                                 unsigned long parent_rate)

{
struct hi3660_stub_clk *stub_clk = to_stub_clk(hw);

stub_clk->msg[0] = stub_clk->cmd;
stub_clk->msg[1] = rate / MHZ;

mbox_send_message(stub_clk_chan.mbox, stub_clk->msg);
mbox_client_txdone(stub_clk_chan.mbox, 0); 

stub_clk->rate = rate;
return 0;

}
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Debug kernel functions - cont.
static int hi3660_mbox_send_data(struct mbox_chan *chan, void *msg)
{

[...]

/* Fill message data */
for (i = 0; i < MBOX_MSG_LEN; i++)

writel_relaxed(buf[i], base + MBOX_DATA_REG + i * 4);

/* Trigger data transferring */
writel(BIT(mchan->ack_irq), base + MBOX_SEND_REG);
return 0;

}

$ ./tools/trace.py 'hi3660_mbox_send_data(struct mbox_chan *chan, void *msg)
"msg_id: 0x%x rate: %d", *((unsigned int *)msg), *((unsigned int *)msg + 1)'

PID     TID     COMM            FUNC             -
84      84      kworker/0:1     hi3660_mbox_send_data msg_id: 0x2030a rate: 903
2413    2413    kworker/1:0     hi3660_mbox_send_data msg_id: 0x2030a rate: 903
2413    2413    kworker/1:0     hi3660_mbox_send_data msg_id: 0x2030a rate: 903

We can continue to check program flow 
from high level function to low level 
function for arguments, and BCC 
supports C style sentence to print out 
more complex data structure.

These data “watch points” can easily 
help us to locate the issue happens in 
which component.

For left example, we can observe the 
msg_id value to check if pass correct 
message ID to MCU firmware.
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Statistics based on function arguments
After the kernel functionality has 
been validated, we can continue to 
do simple profiling based on Kernel 
function argument statistics.

Using the argdist.py invocation 
below, we can observe the the CPI 
frequency mostly changes to 
533MHz and 1844MHz.

static int hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
                                 unsigned long parent_rate)

{
struct hi3660_stub_clk *stub_clk = to_stub_clk(hw);

stub_clk->msg[0] = stub_clk->cmd;
stub_clk->msg[1] = rate / MHZ;

mbox_send_message(stub_clk_chan.mbox, stub_clk->msg);
mbox_client_txdone(stub_clk_chan.mbox, 0); 

stub_clk->rate = rate;
return 0;

}

$ tools/argdist.py -I 'linux-mainline/include/linux/clk-provider.h'
  -c -C 'p::hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate, 
unsigned long parent_rate):u64:rate'

COUNT      EVENT
1          rate = 903000000
1          rate = 2362000000
1          rate = 999000000
27         rate = 1844000000
31         rate = 533000000
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Summary (and thank you)

Hand-rolled
Asm Hack value?
Pure C No “magic”, great examples in kernel

Awk-like
Ply Easy to deploy esp. on embedded system 
SystemTap DWARF parsing (and wait a bit?)
BPFtrace #include <linux/dentry.h>

BCC Great tool for tool makers
(and running tools from tool makers)

Everything is awesome…

… and many, many thanks to 
all the people who have 

worked to make it so!

support@linaro.org 

mailto:support@linaro.org

