© 2017 Arm Limited

4
3



Agenda

* Background

* What's CSI

* CSlvs FlexVolume

* How CSI works

* FlexVolume Driver Part

e CSI Driver Part

2 © 2017 Arm Limited

arm



Background

1. Kubernetes has supported a long list of volume types such as:
* awsElasticBlockStore
* fc(fibre channel)
* scalelO
* list to be continued...
Those are so-called "In-tree’ volume plugins.
2. Even k8s has do a lot for you, but sometimes you still need to write a new one.

In this case, FlexVolume and CSI can help you well © which is also the focus of our
today’s topic: Out-of-Tree volume plugin interface.

3 © 2017 Arm Limited q r m



Background

1. In-tree Volume Plugins
* Those are linked, compiled, built and shipped with the core k8s binaries
* Development is tightly coupled and dependent on k8s releases

* Bugs in volume plugin can crash critical k8s components, instead of just the plugin

* Will not be accepted since k8s 1.8
2. Out-of-Tree Volume Plugins (customized plugins by storage providers)
* FlexVolume driver

e CSl driver (*)

4 © 2017 Arm Limited q r m



What’s CSI

* Container Storage Interface (CSl) is a standardized mechanism for Container
Orchestration Systems (COs), including Kubernetes, to expose arbitrary storage systems
to containerized workloads. Storage Provider (SP) develops once and this works across

a number of COs.
 The goal of CSl is to become the primary volume plugin system for k8s in the future.

 k8s 1.9 release has already included the alpha feature of CSI implementation, then beta
in Kubernetes v1.10

 The CSI spec can be found at:

https://github.com/container-storage-interface/spec/blob/master/spec.md

5 © 2017 Arm Limited q r m


https://github.com/container-storage-interface/spec/blob/master/spec.md

CSl vs FlexVolume

Two Out-of-Tree Volume Plugin mechanisms in K8s — FlexVolume and CSI
1. FlexVolume plugin framework:
* Makes the 3™ party storage providers’ plugin as “Out-of-Tree” (same as CSI does)
* exec based API for external volume plugins
* Needs to access the root filesystem of node and master machines when deploying
* Doesn’t address the pain point of dependencies.

2. CSl overcomes the limitations of FlexVolume listed above. CSl is the preferred solution,
for now CSI and FlexVolume can co-exist.

6 © 2017 Arm Limited q r m



How CSI works

* A new in-tree CSI Volume plugin(K8s) + out-of-tree CSI Volume driver (3™ party)

 Communication channel via a Unix Domain Socket(UDS) created by 37 Volume Driver

Node Mater
CI Voume CSlI Proxy attach/detach

Driver Containers

controller

socket API Server

out-of-tree 3" party component

The socket file also called a ‘EndPoint’ in form of like:

- in-tree of k8s component /var/lib/kubelet/plugins/rook-ceph/csi.sock

7 © 2017 Arm Limited a r m



How CSI works

Recommended Mechanism for Deploying CSI Drivers on k8s

Node Master
Kubelet = | DaemonSet Pod StatefulSet (replica:1) Kube
(ensures no more than 1 instance running at a time) Controller
Manager

l

API
\ Server
. PC (UD
ropagation |
Kl
Em Ir Volume ]
b, S voame "
B e R ——
mcketsl ’q[ Host varflib/kubelet 1

.Extemal Component - Created by Third Party Storage Vendor
- External Component - Created by Kubernetes Team

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md

8 © 2017 Arm Limited a r m



A CSI deployment in real world

NoJeo Node 1
ode - =N
. ~ |. * \
driver registrar — Node 2
g driver J
Node n-1 ° uDS
~ Node n

£ N

driver " registrar

driver " registrar

attacher pod

k8s cluster

[ ] Master Node

C e C ] | (driver + registrar) pod

9 © 2017 Arm Limited q r m



FlexVolume Driver Part (Take Rook as an example)

10 © 2017 Arm Limited a rm



FlexVVolume Driver -- rookflex

‘rookflex” exists in form of a binary file and has been deployed into volume-plugin-dir by

11

Rook Agent on each node.

‘rookflex” implements ‘mount’ and ‘umount” methods required by FlexVolume Spec

For a specific YAML file of a workload, the storage related part looks like:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: rook-ceph-block
provisioner: ceph.rook.io/block
parameters:

pool: replicapool

Storage Provisioning

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: wp-pv-claim
labels:
app: wordpress
spec:
storageClassName: rook-ceph-block
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 20Gi

spec:

- image: wordpress:4.6.1-apache
name: wordpress
env:
- name: WORDPRESS_DB_HOST
value: wordpress-mysql
- name: WORDPRESS_DB_PASSWORD
value: changeme
ports:
- containerPort: 8@
name: wordpress
volumeMounts:
- name: wordpress-persistent-storage
mountPath: /var/www/html
volumes:
- name: wordpress-persistent-storage
persistentVolumeClaim:

claimName: wp-pv-claim

containers: Storage Consuming

© 2017 Arm Limited

arm


https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md

A practical FlexVolume driver -- rookflex

 When that workload pod is scheduled to one node and begin to run, the kubelet will

interacts with the driver to mount the volume into the ‘'mountPath” specified by the
YAML. To do so, kubelet needs to:

1. Lookup the right FlexVolume driver.

The look up flow is: PVC name = StorageClass = provisioner name:

ceph.rook.io/block = Flex volume vendor name: "ceph.rook.io” = figure out the
driver folder and driver name: rookflex

2. Call 'mount” method of rookflex like: *S(volume-plugin-dir)/rookflex mount’
3. The above mount will call the corresponding function in Rook Agent via UDS.

4. Local Rook Agent will attach the volume into its node(a ‘rbd map’ operation).

12 © 2017 Arm Limited q r m



Flexvolume-based volume operations

[ kubectl create —f workload.yaml ]

7SI

@]

Operator pod

[ kubectl create —f my-pvc.yaml
server

rook flexvolume
/dev/rbd0 Driver

\_ %

createVolume Attach

1. Provisioning part.

‘rbd create” a volume in Ceph
cluster.

2. Attach and Mount part.

‘rbd map” the volume to a specified
node as a block device then mount
to the dir path in workload pod.

13 © 2017 Arm Limited q rm



CSI Volume Driver Part

14 © 2017 Arm Limited a rm



CSl: Zoom into the volurpc_e _d_riy(_er_

I_ Identity Routines I
i o GetPlugininfo() .

. . o GetPluginCapabilities()
Sidecar Containers i Probe() [

o= "
* L 4

Controller Routines "

Identity Service
CreateVolume()

Node Service

o DeleteVolume()

ControllerPublishVolume I

Controller Service =

Node Routines I

NodePublishVolume() I

NodeUnpublishVolume() .

I ControllerPublishVolume I

| L] | | u | u | u | u I u L] ] I | L] | | u | u | u J

AP| Serve 3'd party Volume Driver

15 © 2017 Arm Limited q rm



CSl: external-provisioner

1.
2.

5.

16

A cluster admin creates a StorageClass pointing to the CSl driver’s external-provisioner.
A user creates a PersistantVolumeClaim referring to the new StorageClasss.
The persistent volume controller realizes that dynamic provisioning is needed.

The external-provisioner for the CSl driver sees the PersistentVolumeClaim so it stats dynamic volume
provisioning:

o It deferences the StorageClass to collect the opaque parameters to use for provisioning.

o It calls CreateVolume() against the CSI driver container with parameters from the StorageClass and
PersistentVolumeClaim objects.

Once the volume is successfully created, the external-provisioner creates a PersistentVolume object to
represent the newly create volume and binds it to the PersistentVolumeClaim.

© 2017 Arm Limited q r m



CSl: external-attacher

spec: f
containers: Kubernetes attach/detach controller

- image: wordpress:4.6.1-apache
name: wordpress type VolumeAttachment {
env:

- name: WORDPRESS_DB_HOST
value: wordpress-mysql
- name: WORDPRESS_DB_PASSKORD

value: changeme

// The name of the volume driver MUST handle this request. This name must
be the same as StorageCloass.Provisioner

Attacher string
ports:

- containerPort: 8@

// The name of the PV to attache

name: wordpress
volumeMounts: PersistentVolumeName string
- name: wordpress-persistent-storage

mountPath: /var/www/html

// k8s node name that the volume should be attached to

Umes : NodeName string

- name: wordpress-persistent-storage
persistentVolumeClaim:

claimName: wp-pv-claim

1. k8s attach/detach controller sees that a pod referencing a CSl volume plugin is scheduled to a node = call in-tree volume
plugin’s attach()

2. The in-tree volume plugin creates a new VolumeAttachment object in the k8s API
3. The external-attacher sees the VolumeAttachment object and triggers a ControllerPublish again the CSI volume driver to fulfil it.

17 © 2017 Arm Limited q rm



Ceph-CSI based VOIume Operations [VolumeAttachmentcreated]

with a specified PV name

Node n-1 Node n

workload Pod
Jvar/www/html

external- /olu
[ kubectl create —f my-pvc.yaml Yel[V external-

provisioner Driver = Driver attacher

/dev/rbd0

ControllerPuk e(volume_id, node_id)

controller.createVolume()

1. external-provisioner watches
PersistentVolumeClaim objects and
triggers Create/DeleteVolume against
CSl volume driver.

2. external-attacher watches
VolumeAttachment objects and triggers
ControllerPublish/Unpublish against a
CSl volume driver.

18 © 2017 Arm Limited q rm

Ceph Cluster




Thank You!
Danke!
Merci!
159157
HYMED!
Gracias!
Kiitos!




