
© 2017 Arm Limited

Oct. 22, 2018
Open Source Summit, Edinburgh, UK 2018

Internals of Docking
Storage with

Kubernetes Workloads
Dennis Chen

Staff Software Engineer

© 2017 Arm Limited 2

Agenda
• Background
• What’s CSI
• CSI vs FlexVolume

• How CSI works
• FlexVolume Driver Part
• CSI Driver Part

© 2017 Arm Limited 3

Background

1. Kubernetes has supported a long list of volume types such as:

• awsElasticBlockStore

• fc(fibre channel)

• scaleIO

• list to be continued…

Those are so-called `In-tree` volume plugins.

2. Even k8s has do a lot for you, but sometimes you still need to write a new one.

In this case, FlexVolume and CSI can help you well J which is also the focus of our

today’s topic: Out-of-Tree volume plugin interface.

© 2017 Arm Limited 4

Background

1. In-tree Volume Plugins

• Those are linked, compiled, built and shipped with the core k8s binaries

• Development is tightly coupled and dependent on k8s releases

• Bugs in volume plugin can crash critical k8s components, instead of just the plugin

•Will not be accepted since k8s 1.8

2. Out-of-Tree Volume Plugins (customized plugins by storage providers)

• FlexVolume driver

• CSI driver (*)

© 2017 Arm Limited 5

What’s CSI

• Container Storage Interface (CSI) is a standardized mechanism for Container
Orchestration Systems (COs), including Kubernetes, to expose arbitrary storage systems
to containerized workloads. Storage Provider (SP) develops once and this works across
a number of COs.

• The goal of CSI is to become the primary volume plugin system for k8s in the future.

• k8s 1.9 release has already included the alpha feature of CSI implementation, then beta
in Kubernetes v1.10

• The CSI spec can be found at:

https://github.com/container-storage-interface/spec/blob/master/spec.md

https://github.com/container-storage-interface/spec/blob/master/spec.md

© 2017 Arm Limited 6

CSI vs FlexVolume

Two Out-of-Tree Volume Plugin mechanisms in K8s – FlexVolume and CSI

1. FlexVolume plugin framework:

•Makes the 3
rd

party storage providers’ plugin as “Out-of-Tree” (same as CSI does)

• exec based API for external volume plugins

• Needs to access the root filesystem of node and master machines when deploying

• Doesn’t address the pain point of dependencies.

2. CSI overcomes the limitations of FlexVolume listed above. CSI is the preferred solution,

for now CSI and FlexVolume can co-exist.

© 2017 Arm Limited 7

• A new in-tree CSI Volume plugin(K8s) + out-of-tree CSI Volume driver (3rd party)

• Communication channel via a Unix Domain Socket(UDS) created by 3rd Volume Driver

CSI Volume
Driver

CSI Proxy
Containers

socket

Node

attach/detach
controller

API Server

How CSI works

The socket file also called a ‘EndPoint’ in form of like:
/var/lib/kubelet/plugins/rook-ceph/csi.sock

out-of-tree 3rd party component

in-tree of k8s component

Mater

API
Obj

kube-controller-manager

gRPC

© 2017 Arm Limited 8

How CSI works
Recommended Mechanism for Deploying CSI Drivers on k8s

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md

© 2017 Arm Limited 9

A CSI deployment in real world

(driver + registrar) pod

Node 1

Node 2

Node n
Node n-1 . . .

k8s cluster
API server Master Node

UDS UDS

driver registrar
Node 0

driver registrar

driver registrar

driver registrar

provisioner pod

attacher pod

driver registrar

driver registrar

© 2017 Arm Limited 10

FlexVolume Driver Part (Take Rook as an example)

© 2017 Arm Limited 11

FlexVolume Driver -- rookflex
• `rookflex` exists in form of a binary file and has been deployed into volume-plugin-dir by

Rook Agent on each node.

• `rookflex` implements ‘mount’ and ‘umount’ methods required by FlexVolume Spec

• For a specific YAML file of a workload, the storage related part looks like:
Storage Provisioning Storage Consuming

https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md

© 2017 Arm Limited 12

A practical FlexVolume driver -- rookflex
• When that workload pod is scheduled to one node and begin to run, the kubelet will

interacts with the driver to mount the volume into the `mountPath` specified by the
YAML. To do so, kubelet needs to:

1. Lookup the right FlexVolume driver.

The look up flow is: PVC name à StorageClass à provisioner name:
ceph.rook.io/block à Flex volume vendor name: "ceph.rook.io“ à figure out the
driver folder and driver name: rookflex

2. Call `mount` method of rookflex like: `$(volume-plugin-dir)/rookflex mount`

3. The above `mount` will call the corresponding function in Rook Agent via UDS.

4. Local Rook Agent will attach the volume into its node(a ‘rbd map’ operation).

© 2017 Arm Limited 13

Flexvolume-based volume operations

kubectl create –f my-pvc.yaml
Agent podWorkload

pod

rook flexvolume
Driver

Flexvolume
server

Node n

Operator pod

Node 0

kubelet

/dev/rbd0

Cluster

kubectl create –f workload.yaml

/var/www/html

volume

mount

createVolume Attach

Mount

1. Provisioning part.
`rbd create` a volume in Ceph
cluster.
2. Attach and Mount part.
`rbd map` the volume to a specified
node as a block device then mount
to the dir path in workload pod. PV

GetPV

UDS

© 2017 Arm Limited 14

CSI Volume Driver Part

© 2017 Arm Limited 15

CSI: Zoom into the volume driver

Identity Service

Node Service

Controller Service

UDS

driver registrar

external-provisioner

external-attacher

Identity Routines

o CreateVolume()
o DeleteVolume()
o ControllerPublishVolume()

Controller Routines

o NodePublishVolume()
o NodeUnpublishVolume()
o ControllerPublishVolume()

Node Routines

o GetPluginInfo()
o GetPluginCapabilities()
o Probe()

3rd party Volume Driver

Sidecar Containers

API Server

© 2017 Arm Limited 16

CSI: external-provisioner
1. A cluster admin creates a StorageClass pointing to the CSI driver’s external-provisioner.

2. A user creates a PersistantVolumeClaim referring to the new StorageClasss.

3. The persistent volume controller realizes that dynamic provisioning is needed.

4. The external-provisioner for the CSI driver sees the PersistentVolumeClaim so it stats dynamic volume
provisioning:

o It deferences the StorageClass to collect the opaque parameters to use for provisioning.

o It calls CreateVolume() against the CSI driver container with parameters from the StorageClass and
PersistentVolumeClaim objects.

5. Once the volume is successfully created, the external-provisioner creates a PersistentVolume object to
represent the newly create volume and binds it to the PersistentVolumeClaim.

© 2017 Arm Limited 17

CSI: external-attacher

type VolumeAttachment {
…

// The name of the volume driver MUST handle this request. This name must
be the same as StorageCloass.Provisioner

Attacher string
…

// The name of the PV to attache
PersistentVolumeName string

// k8s node name that the volume should be attached to
NodeName string
…

}

Kubernetes attach/detach controller

1. k8s attach/detach controller sees that a pod referencing a CSI volume plugin is scheduled to a node à call in-tree volume
plugin’s attach()

2. The in-tree volume plugin creates a new VolumeAttachment object in the k8s API
3. The external-attacher sees the VolumeAttachment object and triggers a ControllerPublish again the CSI volume driver to fulfil it.

© 2017 Arm Limited 18

Ceph-CSI based volume operations
Node n-1

external-
provisioner

CSI Volume
Driver

UDS

Ceph Cluster

volume

controller.createVolume()

Node n

external-
attacher

CSI Volume
Driver

UDS

ControllerPublishVolume(volume_id, node_id)

/dev/rbd0

NodePublishVolume()

workload Pod
/var/www/html

kubectl create –f my-pvc.yaml

1. external-provisioner watches
PersistentVolumeClaim objects and
triggers Create/DeleteVolume against
CSI volume driver.

VolumeAttachment created
with a specified PV name

2. external-attacher watches
VolumeAttachment objects and triggers
ControllerPublish/Unpublish against a
CSI volume driver.

1919

Thank You!
Danke!
Merci!
��!
�����!
Gracias!
Kiitos!

© 2017 Arm Limited

