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● ~4 years of Virtualization, SDN and Cloud Computing
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● Active KVM nVMX contributor
● Interests: Anything low-level

○ CPU, OS internals, networking, vulnerabilities, exploits, virtualization and etc.
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● Focus only on nVMX (Sorry AMD…)
● Deep-dive into one nVMX mechanism which had many issues

○ First documentation of mechanism outside code
○ Maybe relevant for other architectures nested support

● Present recent nVMX improvements in high-level
● Highlight nVMX open issues
● Suggest possible nVMX future directions



How does nVMX works?
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nVMX event injection
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2. RDMSR exits to L0
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1. L1 RDMSR bad_msr
2. RDMSR exits to L0
3. L0 emulates RDMSR and queues #GP:

(a) Save pending exception in struct kvm_vcpu_arch
(b) Set KVM_REQ_EVENT
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1. L1 RDMSR bad_msr
2. RDMSR exits to L0
3. L0 emulates RDMSR and queues #GP:

(a) Save pending exception in struct kvm_vcpu_arch
(b) Set KVM_REQ_EVENT

4. Before host entry to guest, KVM_REQ_EVENT evaluates queued events:
Inject pending #GP to guest by VMCS
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1. L2 RDMSR bad_msr
2. RDMSR exits to L0
3. L0 emulates RDMSR and queues #GP:

(a) Save pending exception in struct kvm_vcpu_arch
(b) Set KVM_REQ_EVENT

4. Before host entry to guest, KVM_REQ_EVENT evaluates queued events:
(a) If (vCPU in guest-mode && Has event which should L2→L1)
      ⇒ Emulate L2→L1
(b) Otherwise ⇒ Inject pending #GP to guest by VMCS
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● A VMExit can occur during event-delivery
● Example: Write of exception frame to stack triggers EPT_VIOLATION
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● CPU saves the event which attempted to deliver in vmcs→idt_vectoring_info
● On guest→host:

1. KVM checks if vmcs→idt_vectoring_info valid
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    and set KVM_REQ_EVENT



● A VMExit can occur during event-delivery
● Example: Write of exception frame to stack triggers EPT_VIOLATION
● CPU saves the event which attempted to deliver in vmcs→idt_vectoring_info
● On guest→host:

1. KVM checks if vmcs→idt_vectoring_info valid
2. If valid, queue injected event in struct kvm_vcpu_arch
    and set KVM_REQ_EVENT

● KVM_REQ_EVENT will evaluate injected event on next entry to guest



● What if VMExit occurs during event-delivery to L2?
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● What if VMExit occurs during event-delivery to L2?
● If exit reflected to L1 ⇒ Emulate exit during event-delivery to L1

○ Emulate L2→L1 VMExit with injected event in vmcs12→idt_vectoring_info

● Otherwise ⇒ Inject event directly to L2
○ L1 should not intercept event!
○ L1 should not be aware L0 had exit during attempt to deliver event

● How L0 knows L1 cannot intercept event on KVM_REQ_EVENT handler?
● nVMX requires clear separation between pending vs. injected!

○ A pending event can be intercepted by L1
○ An injected event cannot be intercepted by L1
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● Occasionally, L1 stuck after running L2 guests
● L1 dmesg reveals some hints on the issue
● All L1 CPUs but one waiting on KVM’s mmu_lock:

○ _raw_spin_lock+0x20/0x30
tdp_page_fault+0x1b1/0x260 [kvm]
? __remove_hrtimer+0x3c/0x90
kvm_mmu_page_fault+0x65/0x130 [kvm]
handle_ept_violation+0xaa/0x1a0 [kvm_intel]



● Occasionally, L1 stuck after running L2 guests
● L1 dmesg reveals some hints on the issue
● All L1 CPUs but one waiting on KVM’s mmu_lock:

○ _raw_spin_lock+0x20/0x30
tdp_page_fault+0x1b1/0x260 [kvm]
? __remove_hrtimer+0x3c/0x90
kvm_mmu_page_fault+0x65/0x130 [kvm]
handle_ept_violation+0xaa/0x1a0 [kvm_intel]

● One L1 CPU is holding KVM’s mmu_lock while waiting for IPI ACK:
○ ? smp_call_function_many+0x1c7/0x250

kvm_make_all_cpus_request+0xbb/0xd0 [kvm]
kvm_flush_remote_tlbs+0x1d/0x40 [kvm]
kvm_mmu_commit_zap_page+0x22/0xf0 [kvm]
mmu_free_roots+0x13c/0x150 [kvm]



qemu-system-x86-19066 [030] kvm_nested_vmexit: rip: ⇐ Exit L2 to L0
0xfffff802c5dca82f reason: EPT_VIOLATION ext_inf1: 0x0000000000000182
ext_inf2: 0x00000000800000d2 ext_int: 0x00000000 ext_int_err: 0x00000000

⇒ L2→L0 exit during event-delivery of interrupt 0xd2
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qemu-system-x86-19066 [030] kvm_nested_vmexit: rip: ⇐ Exit L2 to L0
0xfffff802c5dca82f reason: EPT_VIOLATION ext_inf1: 0x0000000000000182
ext_inf2: 0x00000000800000d2 ext_int: 0x00000000 ext_int_err: 0x00000000

⇒ L2→L0 exit during event-delivery of interrupt 0xd2
⇒ L0 queues event for injection + Set KVM_REQ_EVENT
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qemu-system-x86-19054 [028] kvm_apic_accept_irq: apicid f vec 252 (Fixed|edge)

⇒ Received IPI queued pending interrupt 252 in L1 vLAPIC
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qemu-system-x86-19066 [030] kvm_inj_virq: irq 210 ⇐ re-inject interrupt to L2

qemu-system-x86-19066 [030] kvm_entry: vcpu 15 ⇐ Resume L2

⇒ KVM_REQ_EVENT re-inject queued injected interrupt to L2
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qemu-system-x86-19066 [030] kvm_nested_vmexit: rip: ⇐ Exit L2 to L0
0xffffe00069202690 reason: EPT_VIOLATION ext_inf1: 0x0000000000000083
ext_inf2: 0x0000000000000000 ext_int: 0x00000000 ext_int_err: 0x00000000

⇒ L2→L0 on EPT_VIOLATION (not during event-delivery)
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qemu-system-x86-19066 [030] kvm_nested_vmexit_inject: reason:
EPT_VIOLATION ext_inf1: 0x0000000000000083 ext_inf2: 0x0000000000000000
ext_int: 0x00000000 ext_int_err: 0x00000000
⇐ Emulate exit from L2 to L1

qemu-system-x86-19066 [030] kvm_entry: vcpu 15 ⇐ Resume L1

⇒ L0 resumes L1
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qemu-system-x86-19066 [030] kvm_nested_vmexit_inject: reason:
EPT_VIOLATION ext_inf1: 0x0000000000000083 ext_inf2: 0x0000000000000000
ext_int: 0x00000000 ext_int_err: 0x00000000
⇐ Emulate exit from L2 to L1

qemu-system-x86-19066 [030] kvm_entry: vcpu 15 ⇐ Resume L1

⇒ L0 resumes L1
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pending L1 
interrupt?



● L0 didn’t re-evaluate pending L1 event because KVM_REQ_EVENT not set
○ IPI received when KVM_REQ_EVENT already set (Before re-injection to L2)



● L0 didn’t re-evaluate pending L1 event because KVM_REQ_EVENT not set
○ IPI received when KVM_REQ_EVENT already set (Before re-injection to L2)

● What if L0 will L2→L1 before resuming L2 with re-injection?
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● L0 didn’t re-evaluate pending L1 event because KVM_REQ_EVENT not set
○ IPI received when KVM_REQ_EVENT already set (Before re-injection to L2)

● What if L0 will L2→L1 before resuming L2 with re-injection?
⇒ Queued injected event will be written to vmcs12->idt_vectoring_info
⇒ Bug: L1 will see exit on EXTERNAL_INTERRUPT during event-delivery

● We wish to inject to L2 and immediately after re-evaluate L1 pending event
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● Sometimes KVM is blocked from exiting from L2 to L1:
○ E.g. There is an injected event for L2

● In these cases, we can request an “immediate-exit” from L2 to L0
● “Immediate-exit” requests CPU to exit guest immediately after entering it

○ Set KVM_REQ_EVENT
○ Disable interrupts + self-IPI, just before entering the guest

● CPU will inject event and then immediately exit on EXTERNAL_INTERRUPT
● When exit back to L0, re-evaluate L1 pending event



● Miss of L1 IPI when on L2→L0 exit during interrupt-delivery
○ L1 stuck as a result of losing an IPI while holding KVM mmu_lock

● Root-cause: Reinjection of L2 events blocked evaluation of L1 pending events
● 1a680e355c94 (“KVM: nVMX: Require immediate-exit when event reinjected 

to L2 and L1 event pending”)



Recent nVMX 
improvements



● nVMX event-injection fixes
○ Missing L1 events, SMI while in guest-mode, handling L1 not intercepting interrupts
○ TODO: Ability to get/set vCPU events considering pending/injected
○ TODO: Keep CR2/DR6 unmodified if #PF/#DB intercepted by L1

■ Jim Mattson series to handle all mentioned above: 
https://patchwork.kernel.org/project/kvm/list/?series=31593

○ TODO: L2 pending trap exceptions can still be lost because of L2→L1 transition

● Nested APICv fixes
○ Nested posted-interrupts race-condition and EOI-exitmap corruption
○ Enabled running ESXi as L1 hypervisor with APICv enabled
○ TODO: Use hardware for re-evaluation of missed nested posted-interrupts

■ https://patchwork.kernel.org/patch/10132081/
■ https://patchwork.kernel.org/patch/10132083/

https://patchwork.kernel.org/project/kvm/list/?series=31593
https://patchwork.kernel.org/patch/10132081/
https://patchwork.kernel.org/patch/10132083/


● Nested VPID fixes & optimizations
○ Invalidation of wrong TLB mappings and unnecessary TLB flushes

● Nested MMU optimizations
○ L1<->L2 transitions avoid MMU unload, fast switch EPTP and L1/L2 separate MMU contextes

● L1→L2 VMEntry optimizations
○ Dirty-track non-shadowed VMCS fields, faster build of vmcs02 MSR bitmap,

optimize shadow VMCS copying

● Exposure of VMX features to guest fixes
○ Affected by CPU features, KVM module parameters and guest CPUID!

● More L1→L2 VMEntry checks



● KVM holds internal CPU state for running L2
○ VMXON region address, active vmcs12 address
○ Cached vmcs12 & cached shadow vmcs12
○ Internal nested flags (E.g. nested_run_pending)

● Required IOCTLs to save/restore this state for migration
○ KVM_{GET,SET}_NESTED_STATE

● Required ability to set VMX MSRs from userspace
● TODO: QEMU patches for supporting this

○ https://patchwork.kernel.org/patch/10601689/

https://patchwork.kernel.org/patch/10601689/


● Use-case: Triple-Virtualization!
● Accelerate L2 VMREADs/VMWRITEs



● Use-case: Triple-Virtualization!
● Accelerate L2 VMREADs/VMWRITEs
● However, L3 performance still insufficient for Oracle’s production workloads

○ See appendix slides for details

● TODO: Optimizations for VMCS Shadowing virtualization
○ Avoid building vmcs02→{vmread,vmwrite}_bitmap when vmcs12 bitmaps unchanged
○ Cache CPU unsupported VMCS fields on KVM boot-time
○ Get rid of cached shadow vmcs12



kvm-intel.nested=1 default on kernel 4.20!
https://patchwork.kernel.org/patch/10644311/

https://patchwork.kernel.org/patch/10644311/


● Microsoft Hyper-V improved nested perf by PV interface (eVMCS)
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● Microsoft Hyper-V improved nested perf by PV interface (eVMCS)
● KVM should have it’s own PV interface for nested

○ eVMCS too coupled with Hyper-V PV interface

● Future of supporting all combinations of L0/L1 hypervisors PV interfaces?
○ E.g. KVM was recently enhanced to be able to both use and expose Hyper-V eVMCS

● Should there be cross-hypervisor PV standard for nested-virtualization?



Conclusion



● Many nVMX advancements over past year which we don’t have time for…
○ Appendix slides contain deep-dive to some of those mechanisms for reference!

● nVMX semantics stabilized very well over the past year
○ Thanks to multiple contributes: Google, AWS, Intel, RedHat, Oracle and more
○ Most semantic issues discovered by running various hypervisors as L1

● kvm-unit-tests VMX tests cover mainly edge cases and regression tests
● Challenges ahead: PV for nested & Triple-Virtualization



Questions?
Thank you!



Appendix
Things I wish I had time to present… :)



● VMCS Shadowing
● Triple-Virtualization
● Nested APICv
● nVMX event injection



VMCS Shadowing



● On VMPTRLD, VMCS loaded to CPU is cached in per-CPU VMCS cache
● Access to VMCS done by dedicated instructions: VMREAD/VMWRITE



● On VMPTRLD, VMCS loaded to CPU is cached in per-CPU VMCS cache
● Access to VMCS done by dedicated instructions: VMREAD/VMWRITE

nVMX implementation:

● L0 VMPTRLD emulation copy in-memory vmcs12 into software cache
● L0 VMREAD/VMWRITE emulation read/write from/to cached vmcs12

⇒ Exits on L1’s VMREAD/VMWRITE are significant performance hit



● Hardware VMX feature to improve nVMX performance
● Reduce #VMExits on L1 VMREAD/VMWRITE
● VMCS->vmcs_link_ptr points to “shadow vmcs”
● L1 VMREAD/VMWRITE directed to “shadow vmcs”

○ According to VMCS->{vmread,vmwrite}_bitmap
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● On L1 VMPTRLD, L0 copies cached vmcs12 to shadow vmcs01
○ L1 will read values using VMREAD from shadow vmcs01

● On L1 VMCLEAR, L0 copies shadow vmcs01 to cached vmcs12
○ L1 may have modified shadow vmcs01 using VMWRITE

● On L1→L2 transition, L0 copies shadow vmcs01 to cached vmcs12
○ L1 has written values using VMWRITE to shadow vmcs01

● On L2→L1 transition, L0 copies cached vmcs12 to shadow vmcs01
○ L1 will read values using VMREAD from shadow vmcs01



Triple-Virtualization!



● Some of Oracle Ravello guests are hypervisors themselves…
○ ESXi, KVM, Xen, Hyper-V

● Therefore, setup is:
○ L0 = Public cloud provider hypervisor
○ L1 = Ravello’s hypervisor (KVM based)
○ L2 = Ravello guest which is a hypervisor (e.g. ESXi)
○ L3 = L2 guests

● We are dealing with a Triple-Virtualization scenario!



● Triple-Virtualization works but...
● L2 will execute VMREADs / VMWRITEs
● They will perform extremely poorly unless L1 is utilizing VMCS Shadowing

⇒ We need L0 to support VMCS Shadowing Virtualization!
● Lead us to contact Jim Mattson to implement this in GCE L0 KVM
● Jim developed the patches and I have further modified them for upstream
● https://www.spinics.net/lists/kvm/msg170724.html

https://www.spinics.net/lists/kvm/msg170724.html
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● All L2 VMREAD/VMWRITE still exit to L0
● Reflect exit on VMREAD/VMWRITE to L1 based on vmcs12→

{vmread,vmwrite}_bitmap
● Modify L0 VMREAD/VMWRITE exit handlers to write to cached shadow 

vmcs12 instead of cached vmcs12 if vCPU in guest-mode
● Cache shadow vmcs12

○ L1→L2: Copy from vmcs12→vmcs_link_ptr to shadow VMCS12 cache
○ L2→L1: Flush shadow vmcs12 cache to guest vmcs12→vmcs_link_ptr

● 32c7acf04487 (“KVM: nVMX: Expose VMCS shadowing to L1 guest”)

⇒ Saves exits to L1 on L2’s VMREADs/VMWRITEs!
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● Allocate shadow VMCS and {vmread,vmwrite}_bitmap for vmcs02
● vmcs02→{vmread,vmwrite}_bitmap based on vmcs12 bitmaps

○ Not identical as unsupported VMCS fields by L0 are still intercepted

● On L1→L2, copy cached shadow vmcs12 to shadow vmcs02
● On L2→L1, copy shadow vmcs02 to cached shadow vmcs12
● Not applied yet. v1 of patch series:

https://www.spinics.net/lists/kvm/msg170724.html

⇒ Saves exits to both L0 & L1 on L2’s VMREADs/VMWRITEs!

https://www.spinics.net/lists/kvm/msg170724.html


● On L1→L2 transition, L0 copies shadow vmcs01 to cached vmcs12
● On L2→L1 transition, L0 copies cached vmcs12 to shadow vmcs01
● On L1 VMPTRLD, L0 copies cached vmcs12 to shadow vmcs01
● On L1 VMCLEAR, L0 copies shadow vmcs01 to cached vmcs12



● On L1→L2 transition, L0 copies shadow vmcs01 to cached vmcs12
And cache shadow vmcs12

● On L2→L1 transition, L0 copies cached vmcs12 to shadow vmcs01
And flush cached shadow vmcs12 to shadow vmcs12

● On L1 VMPTRLD, L0 copies cached vmcs12 to shadow vmcs01
● On L1 VMCLEAR, L0 copies shadow vmcs01 to cached vmcs12



● On L1→L2 transition, L0 copies shadow vmcs01 to cached vmcs12
And cache shadow vmcs12
And build vmcs02→{vmread,vmwrite}_bitmap from vmcs12 bitmaps
And copy cached shadow vmcs12 to shadow vmcs02

● On L2→L1 transition, L0 copies cached vmcs12 to shadow vmcs01
And copy shadow vmcs02 to cached shadow vmcs12
And flush cached shadow vmcs12 to shadow vmcs12

● On L1 VMPTRLD, L0 copies cached vmcs12 to shadow vmcs01
● On L1 VMCLEAR, L0 copies shadow vmcs01 to cached vmcs12



● L3→L2 results in a total of 15 copies!
○ Of shadow vmcs to cached vmcs (/ cached shadow vmcs) and vice-versa



● L3→L2 results in a total of 15 copies!
○ Of shadow vmcs to cached vmcs (/ cached shadow vmcs) and vice-versa

● Key Observations:
1. All transitions from/to Lx involves all underlying layers
2. Lx<->Ly involve copies of shadow vmcs to cached vmcs and vice-versa
3. Copies of shadow VMCS requires VMPTRLD which incur #VMExit



● Should create a KVM PV interface for nested? Similar to Hyper-V?
● Should there be cross-hypervisor PV standard for nested-virtualization?

○ Supporting all combinations of L0/L1 hypervisors PV interfaces is complex…
○ KVM was recently enhanced to be able to both use and expose Hyper-V eVMCS

● Can we suggest a new VMX feature for Intel to improve triple-virtualization?
○ Ability to read/write from/to shadow VMCS without VMPTRLD to make it active?

* Note: Deeper perf analysis wasn’t performed yet



Triple-Virtualization!
 Technical details



→
● L3 exits to L0 which decides to forward exit to L1

○ L0 copy cached shadow vmcs12 to shadow vmcs12
○ L0 copy cached vmcs12 to shadow vmcs01

● L0 resume into L1 which decides to forward exit to L2
○ L1 copy cached shadow vmcs23 to shadow vmcs23
○ L1 VMPTRLD vmcs12 which exit to L0

■ L0 copy shadow vmcs01 to cached vmcs12
■ L0 copy vmcs12 to cached vmcs12
■ L0 copy vmcs12 to shadow vmcs02

○ L1 copy cached vmcs23 to shadow vmcs12
■ L1 VMPTRLD shadow vmcs12 which exit to L0

● L0 does 3 copies…
■ L1 copies VMCS fields
■ L1 VMCLEAR shadow vmcs12 which exit to L0

● L0 copies shadow vmcs01 to cached vmcs12
■ L1 VMPTRLD vmcs12

● L0 does 3 copies...



→

● L1 resume into L2 exit to L0
○ L0 copy shadow vmcs01 to cached vmcs12

○ L0 copy shadow vmcs12 into cached shadow vmcs12

● And that’s it! :) 

Total of 15 copies!

(And we haven’t counted L2→L3…)



● HVX == Oracle Ravello binary-translation hypervisor
● L1 binary translation results in L3→L2 not involving L0
● Performance test setup:

○ L0 = GCE_KVM
○ L1 = KVM / HVX (Haswell, 4 vCPUs, 26GB memory)
○ L2 = KVM (8 vCPUs, 16GB memory)
○ L2 is running 2 Ubuntu 16.04 guests as L3 (4 vCPUs, 8GB memory)

● netperf between L3 guests:
○ HVX performs ~4x better than KVM both in throughput and latency

● Sysbench:
○ HVX performs ~2x better then KVM



● We can avoid shadow VMCS performance hit with PV interfaces
● Hyper-V eVMCS mechanism helps
● L0 emulate Hyper-V PV interface with eVMCS and L1 will consume it
● Probably was first one to run such a setup…

○ Created patches for L0 QEMU to expose eVMCS
○ Fixed bug: 2307af1c4b2e (“KVM: VMX: Mark VMXArea with revision_id of physical CPU even 

when eVMCS enabled”)

● Not a real solution for the general case
○ Works only if L1 knows how to use eVMCS...
○ We don’t really want to expose Hyper-V PV interface for L1

● TODO: Collect concrete perf numbers



Nested APICv



● Generic name for combination of APIC related VMX features
● Aim to reduce #VMExits because of APIC and interrupts virtualization



● APIC {access,register} Virtualization:
CPU emulates read/write from/to vLAPIC without #VMExit

● Virtual interrupt delivery:
CPU emulates LAPIC interrupt evaluation and delivery without #VMExit

● Posted-Interrupts:
Post interrupt to another CPU without #VMExit target CPU
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pi_desc

pi_notification_vector

PIR (Pending virtual interrupts)

ON bit
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1. CPU merge PIR to vAPIC IRR
2. CPU eval pending interrupts
3. CPU injects interrupt
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● What if target CPU currently at L0?
● L0 needs to evaluate pending posted-interrupts in software

⇒ Before each entry to guest, sync PIR to LAPIC IRR
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What about the IPI 
sent to L1?



● L1 pending posted-interrupt needs to be evaluated before entry to L2!
○ L1 intercepts external-interrupts ⇒ L0 should L2→L1
○ Otherwise, inject interrupt directly to L2

● f27a85c4988d (“KVM: nVMX: Re-evaluate L1 pending events when running 
L2 and L1 got posted-interrupt”)
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● What if target CPU currently at L0?
● Need to request L0 to evaluate pending nested posted-interrupts

⇒ Signal pending nested-posted-interrupt and set KVM_REQ_EVENT
● KVM_REQ_EVENT emulate nested-posted-interrupt delivery in software!

○ Clear pi_desc ON bit
○ Sync pi_desc→pir to L1 vLAPIC page
○ Update vmcs02→guest_intr_status (RVI/SVI) accordingly



● Software emulation error prone and less efficient
○ Could mistakenly diverge from hardware implementation
○ TODO: Bug: If target vCPU exits to L1 after sender sets pi_pending, than notification-vector 

interrupt is not raised to L1!

● TODO: Get rid of pi_pending and instead use L1 LAPIC IRR as CPU does
● TODO: Install host handler for vmcs02→pi_notification_vector to avoid 

missing pending interrupt
● TODO: Trigger CPU posted-interrupt logic by self-IPI in case of pending 

nested posted interrupt



● https://patchwork.kernel.org/patch/10132081/
● https://patchwork.kernel.org/patch/10132083/

https://patchwork.kernel.org/patch/10132081/
https://patchwork.kernel.org/patch/10132083/


● Race-Condition in delivering nested Posted-Interrupts
● Root-cause: Delivering event in non-standard way

○ Should use kvm_make_request() + kvm_vcpu_kick()

● 6b6977117f50 (“KVM: nVMX: Fix races when sending nested PI while dest 
enters/leaves L2”)



● VMCS→guest_intr_status specifies:
1. RVI: Holds pending virtual interrupt vector
2. SVI: Holds in-service virtual interrupt vector

● Certain actions cause evaluation of pending virtual interrupts
○ VMEntry, Write to TPR, Write to EOI, Self-IPI and posted-interrupts processing



● VMCS→guest_intr_status specifies:
1. RVI: Holds pending virtual interrupt vector
2. SVI: Holds in-service virtual interrupt vector

● Certain actions cause evaluation of pending virtual interrupts
○ VMEntry, Write to TPR, Write to EOI, Self-IPI and posted-interrupts processing

● VMCS→eoi_exitmap defines vectors on which EOI will cause VMExit in 
addition to EOI virtualization

○ In order to emulate LAPIC EOI broadcast to IOAPIC EOI



● On entry to guest, set RVI to highest vector set in vLAPIC IRR
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● On entry to guest, set RVI to highest vector set in vLAPIC IRR
● Write to IOAPIC redir-table request KVM_REQ_SCAN_IOAPIC on all vCPUs

○ Configure VMCS->eoi_exitmap according to vectors IOAPIC require EOI broadcast on

● Nested virtual interrupt delivery is “trivial”
○ vmcs02→guest_intr_status = vmcs12→guest_intr_status
○ vmcs02→eoi_exitmap = vmcs12→eoi_exitmap
○ Disable WRMSR intercept on LAPIC EOI and SELF_IPI



● ESXi running as L1 which runs L2 guests lose network connectivity
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3. One CPU runs SCAN_IOAPIC handler while vCPU in guest-mode!



● ESXi running as L1 which runs L2 guests lose network connectivity
● Setting enable_apicv=0 seems to make problem disappear
● Analysis shows IOAPIC never got EOI for previous NIC IRQ
● L0 KVM event trace shows:

1. ESXi kernel modifies IOAPIC redir-table (IOAPIC Steering)
2. Write to IOAPIC requests KVM_REQ_SCAN_IOAPIC on all L1 vCPUs
3. One CPU runs SCAN_IOAPIC handler while vCPU in guest-mode!
⇒ Will update eoi_exitmap of vmcs02 instead of vmcs01!
4. L1 NIC IRQ EOI will not exit to L0 and thus won’t propagate to IOAPIC



● IOAPIC never got EOI for previous NIC IRQ
● Issue found only when running ESXi as L1

○ Many issues caused by ESXi IOAPIC steering mechanism...

● Root-cause: IOAPIC EOI-exitmap code not adjusted to nested case
○ Update of EOI-exitmap should be delayed to when vCPU is running L1
○ Handle case LAPIC & IOAPIC are pass-through by updating 

vcpu->arch.ioapic_handled_vectors and only delay update of EOI-exitmap

● e40ff1d6608d (“KVM: nVMX: Do not load EOI-exitmap while running L2”)





● vCPU should not halt when L1 is injecting events to L2
● Root-Cause: Not checking if VMEntry is vectoring when guest activity state is 

set to HLT
● 135a06c3a515 (“KVM: nVMX: Don't halt vcpu when L1 is injecting events to 

L2”)
● Should also wake blocked vCPU while in guest-mode if pending RVI

○ Evaluating pending vCPU events should include check if RVI[7:4] > vPPR[7:4]
○ e6c67d8cf117 (“KVM: nVMX: Wake blocked vCPU in guest-mode if pending interrupt in virtual 

APICv”)



● Direct interrupt injection to L2 don’t update L1 LAPIC IRR and ISR and 
doesn’t consider PPR

● Root-cause: Not using standard inject_pending_event() event injection 
framework for injecting interrupt directly to L2

● 851c1a18c541 (“KVM: nVMX: Fix injection to L2 when L1 don't intercept 
external-interrupts”)



nVMX event injection
 More issues...



1. L2 RDMSR bad_msr which exits to L0
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1. L2 RDMSR bad_msr which exits to L0
2. L1 doesn’t intercept MSR and thus RDMSR emulated by L0
3. L0 queues a pending #GP exception
4. L0 KVM_REQ_EVENT evaluates what should be done with queued events:

a. L1 doesn’t intercept #GP
b. L1 has pending interrupt in LAPIC (Other L1 CPU sent IPI)

5. L0 emulates L2→L1 on EXTERNAL_INTERRUPT
6. Exception still pending in struct kvm_vcpu_arch

⇒ Will be injected to L1 on next KVM_REQ_EVENT!



● L2 exception injected into L1!
● Root-cause: Not clearing exception.pending on L2→L1 transition

○ Bug mistakenly introduced when exception.injected was added

● Fix: Clear pending exception on L2→L1
○ 5c7d4f9ad39d (“KVM: nVMX: Fix bug of injecting L2 exception into L1”)



● L2 exception injected into L1!
● Root-cause: Not clearing exception.pending on L2→L1 transition

○ Bug mistakenly introduced when exception.injected was added

● Fix: Clear pending exception on L2→L1
○ 5c7d4f9ad39d (“KVM: nVMX: Fix bug of injecting L2 exception into L1”)

● OK to clear exception.pending?
○ A pending exception will be re-triggered* on next resume of L2

* TODO: L2 pending trap exceptions can still be lost…


