
Improve Linux User-Space Core
Libraries with Restartable Sequences

Open Source Summit 2018

mathieu.desnoyers@efcios.com 

2

Speaker

● Mathieu Desnoyers
● CEO at EfficiOS Inc.
● Maintainer of: LTTng kernel and user-space tracers, Userspace RCU

library, Linux kernel membarrier and rseq system calls,
● Author of the Restartable Sequence patchset merged into Linux 4.18.

3

Content

● What are restartable sequences (rseq) ?
● Restartable sequences:

– Use-cases,

– Algorithm,

– Upstreaming status,

● Librseq,
● Glibc rseq thread registration,

4

Content

● Restartable Sequences Shortcomings,
● cpu_opv system call,
● Rseq adoption: user-space projects,
● Benchmarks.

5

What are Restartable Sequences (rseq) ?

● Sequences of user-space instructions with a preparation stage,
finalized by a single commit instruction,

● Either executed atomically with respect to preemption, migration,
signal delivery, or aborted before the final commit instruction,

● Kernel guarantees “atomic” execution by moving IP to abort handler
if needed,

● Use-cases: super-fast update operations on per-cpu data in user-space.

6

Restartable Sequences Use-Cases

● LTTng-UST (http://lttng.org)
– User-space tracing in memory buffers shared across processes

● Userspace RCU (http://liburcu.org)
– Single-process per-cpu grace period tracking,

– Multi-process per-cpu grace-period tracking,

● jemalloc and glibc per-cpu memory allocator,
● Application-level per-cpu statistics counters,
● ARM64 PMC read from user-space on big.LITTLE without fault on

migration.

http://lttng.org/
http://liburcu.org/

7

Restartable Sequences Algorithm

Restartable Sequence Critical Section

struct rseq_cs {
 void *start_ip;
 void *post_commit_ip;
 void *abort_ip;
 [...]
};

struct rseq {
 int32_t cpu_id;
 struct rseq_cs *rseq_cs;
 [...]
};

Thread-Local Storage __rseq_abi:

Abort Handler

8

Restartable Sequences Algorithm

● Restartable sequence critical section:
– Preemption or signal delivery interrupting critical section move

instruction pointer to abort handler before returning to user-space,

– Needs to be implemented in assembly,

– Ends with a single store instruction.

9

Restartable Sequences Upstreaming Status

● Linux 4.18:
– rseq system call merged,

– rseq wired up for x86 32/64, powerpc 32/64, arm 32, mips 32/64,

● Linux 4.19:
– rseq wired up for arm 64, s390 32/64,

● Ongoing work:
– librseq,

– glibc rseq registration/unregistration at thread start/exit,

– new cpu_opv system call.

10

Librseq

● User-space library,
● Handle restartable sequence thread registration with explicit library

API call by each thread,
● Provides headers implementing rseq inline assembly code for common

use-cases, e.g. per-cpu compare-and-store and per-cpu add.

11

Glibc Rseq Thread Registration (Ongoing Work)

● Automatically register rseq at thread start and nptl init, unregister rseq
at thread exit (ongoing work),

● Introduce a reference counter field in rseq Thread-Local Storage to
allow glibc as well as early-adopter applications and libraries to
manage rseq registration ownership.

12

Restartable Sequences Shortcomings

● Interaction with debugger single-stepping:
– Restartable sequences will loop forever (no progress) if single-stepped

by a debugger.

● Unable to migrate data between per-cpu data structures without
changing the CPU affinity mask, e.g.:

– Migration of free memory between per-cpu pools,

– Migration of tasks by per-cpu user-space task schedulers.

● Handling critical sections in signal handlers nested early/late over
thread creation/destruction when rseq is not registered is not
straightforward.

13

cpu_opv() System Call (Ongoing Work)
● Vector of operations (similar to iovec) to be executed with preemption

disabled, on a given CPU,
● Can be used as fallback when rseq fails,
● Kernel temporarily pins all pages touched by operations,
● Limited to 16 operations. Overall sequence of operations limited to

4216 bytes (cache-cold: 4.7µs preemption off latency on x86-64).
● Implements “compare” eq/ne operations that allow checking whether

input data provided by user-space has not been modified concurrently.
● Implements memcpy, add, bitwise, shift, and memory barrier

operations.

14

Rseq Adoption: User-Space Projects
● Library early adopters (likely for: lttng-ust, liburcu, jemalloc)

– Provide their own weak __rseq_abi TLS symbol (with refcount field),

– Lazy registration, pthread_setspecific for unregistration,

● Application early adopters
– Provide their own weak __rseq_abi TLS symbol (with refcount field),

or implement their own library for rseq,

– Explicit registration/unregistration at thread start and before it exits,

● Integration into glibc
– Provide strong __rseq_abi TLS symbol (with refcount field),

– Registration at pthread start and nptl init, unregistration at thread exit,

– Use by glibc memory allocator.

15

Benchmarks

● Test hardware
– arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core,

– x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading
enabled.

16

Benchmarks
* Per-CPU statistic counter increment

 getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 344.0 31.4 11.0
x86-64: 15.3 2.0 7.7

* LTTng-UST: write event 32-bit header, 32-bit payload into tracer
 per-cpu buffer

 getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 2502.0 2250.0 1.1
x86-64: 117.4 98.0 1.2

* liburcu percpu: lock-unlock pair, dereference, read/compare word

 getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 751.0 128.5 5.8
x86-64: 53.4 28.6 1.9

17

Benchmark: Prototype Rseq Integration in jemalloc

● Using rseq with per-cpu memory pools in jemalloc at Facebook (based
on rseq 2016 implementation).

● The production workload response-time has 1-2% gain avg. latency,
and the P99 overall latency drops by 2-3%.

18

Benchmark: Reading the Current CPU Number
ARMv7 Processor rev 4 (v7l)
Machine model: Cubietruck

- Baseline (empty loop): 8.4 ns
- Read CPU from rseq cpu_id: 16.7 ns
- Read CPU from rseq cpu_id (lazy registration): 19.8 ns
- glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns
- getcpu system call: 234.9 ns

x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz:

- Baseline (empty loop): 0.8 ns
- Read CPU from rseq cpu_id: 0.8 ns
- Read CPU from rseq cpu_id (lazy registration): 0.8 ns
- Read using gs segment selector: 0.8 ns
- "lsl" inline assembly: 13.0 ns
- glibc 2.19-0ubuntu6 getcpu: 16.6 ns
- getcpu system call: 53.9 ns

19

Links

● linux-rseq development (volatile):
– https://git.kernel.org/pub/scm/linux/kernel/git/rseq/linux-rseq.git/

● librseq development:
– https://github.com/compudj/librseq/

● glibc rseq integration development (volatile):
– https://github.com/compudj/glibc-dev/

● Additional tests/benchmarks branch for rseq (volatile):
– https://github.com/compudj/rseq-test

https://git.kernel.org/pub/scm/linux/kernel/git/rseq/linux-rseq.git/
https://github.com/compudj/librseq/
https://github.com/compudj/glibc-dev/
https://github.com/compudj/rseq-test

20

Related Presentations

● “PerCpu Atomics”, Paul Turner, Andrew Hunter, Linux Plumbers
Conference 2013

– https://blog.linuxplumbersconf.org/2013/ocw/system/presentation
s/1695/original/LPC%20-%20PerCpu%20Atomics.pdf

● “Enabling Fast Per-CPU User-Space Algorithms with Restartable
Sequences”, Mathieu Desnoyers, Linux Plumbers Conference 2016

– https://linuxplumbersconf.org/2016/ocw/proposals/3873.html

● “Restartable Sequences (2017 Edition)”, Mathieu Desnoyers, Kernel
Summit 2017

– https://lwn.net/Articles/KernelSummit2017/

https://blog.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf
https://blog.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf
https://linuxplumbersconf.org/2016/ocw/proposals/3873.html
https://lwn.net/Articles/KernelSummit2017/

21

Related Articles

● Restartable sequences
– https://lwn.net/Articles/650333/

● Restartable sequences restarted
– https://lwn.net/Articles/697979/

● Restartable sequences and ops vectors
– https://lwn.net/Articles/737662/

https://lwn.net/Articles/650333/
https://lwn.net/Articles/697979/
https://lwn.net/Articles/737662/

22

The End

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

