Developments in GFS2

Andy Price <anprice@redhat.com>
Software Engineer, GFS2

OSSEU 2018
GFS2 recap

- Shared storage cluster filesystem
- High availability clusters
- Uses glocks ("gee-locks") based on DLM locking
- One journal per node
- Divided into resource groups
- Requires clustered lvm: clvmd/lvmlockd
- Userspace tools: gfs2-utils
Not-so-recent developments

- Full SELinux support (linux 4.5)
 - Previously no way to tell other nodes that cached labels are invalid
 - Workaround was to mount with -o context=<label>
 - Relabeling now causes security label invalidation across cluster
Not-so-recent developments

• Resource group stripe alignment (gfs2-utils 3.1.11)
 • mkfs.gfs2 tries to align resource groups to RAID stripes where possible
 • Uses libblkid topology information to find stripe unit and stripe width values
 • Tries to spread resource groups evenly across disks
Not-so-recent developments

• Resource group LVBS (linux 3.6)
 • -o rgrplvb (all nodes)
 • LVBS: data attached to DLM lock requests
 • Allows resource group metadata to be cached and transferred with glocks
 • Decreases resource group-related I/O
Not-so-recent developments

- Location-based readdir cookies (linux 4.5)
 - -o loccookie (all nodes)
 - Uniqueness required by NFS
 - Previously 31 bits of filename hash
 - Problem: collisions with large directories (100K+ files)
 - Cookies now based on the location of the directory entry within the directory
Not-so-recent developments

- gfs_controld is gone (linux 3.3)
 - dlm now triggers gfs2 journal recovery via callbacks
- gfs2-utils now required on all nodes for withdraw scripts triggered by a udev event handler.
Recent developments

- iomap writes
 - Multi-page writes
 - Overheads amortized across the range of pages
 - SEEK_HOLE and SEEK_DATA also added using iomap
 - Initial results show good performance improvements in workloads such as SAS calibration
Recent developments

- New resource group header fields
 - Checksum (crc32)
 - Provides instant, reliable error detection
 - Location and size data from rindex
 - Distance to the next resource group
 - Reduces reliance on the rindex and allows more efficient iteration over resource groups.
Recent developments

- Expanded journal log header information
 - statfs changes
 - Allows global statfs updates to be done on journal flush instead of from separate statfs change file
 - Debugging information
 - Pointers back to journal inode, statfs inode, quota inode
 - Timestamp (nanosecond granularity)
- New crc32 to check the new fields
gfs2 on IBM z Systems

- s390x (64-bit) virtual environment
 - Usual virt challenges
 - Low entropy pool
 - Resource overcommitment
- Cluster fencing provided by SMAPI
 - fence_zvmip
- Multi-LPAR config (Single System Image) possible
Future developments

- Faster fsck.gfs2
 - Currently reads block-by-block
 - Use aio, larger reads
 - Makes much larger filesystems practical
- Process-shared resource group locking
- trusted.* xattrs
- Deprecate ‘meta’ gfs2 filesystem fork
 - Replace with better interfaces (sysfs/ioctl)
Future developments

• Filesystem versioning
 • Currently no way to prevent mounting if features aren’t supported or mount options conflict
 • Important for new option defaults where all nodes must use the same ones, e.g. rgrplvb
 • Required to prevent new on-disk data being written by one node and treated as corruption by another
 • fsck.gfs2 must have the same version semantics of gfs2
Future developments

- Journal flush-related performance improvements
 - Journal flushing can be slow, blocks new transactions, increases glock release latency
 - Data must be written back before journal is flushed
 - Tricky problem but potential solutions are being investigated.
 - Plenty of scope for modifying journal log header structures if necessary
Thanks!

Questions?

Mailing list: cluster-devel@redhat.com
gfs2: https://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2.git
gfs2-utils: https://pagure.io/gfs2-utils