Production Grade Edge Computing

Using Kubernetes

Steve Wong
@cantbewong

Open Source Community Relations Engineer
VMware

Open Source Summit Europe
October 23, 2018
Abstract

Some applications benefit from moving closer to data ingest, or the user. Edge reduces local processing latency, and supports isolated operation. It also has challenges compared to the pooled resources, and single point of management of centralized clouds.

You won’t achieve the Google Borg experience at an edge location - nor are you likely to need it. But with planning it is possible to achieve edge deployments that are secure, with predictable performance and “highly available enough” considering constraints on money, physical space, power, etc.

Steve will provide specific recommendations related to architecture, networking, storage, patching, logging, disaster recovery, and remote manageability - based on using Kubernetes, and other open source tools and technology.

This is a rapidly changing space, and Steve will also touch on some interesting proposals and work underway in the space.
Agenda

Production Grade Kubernetes
 What Does It Mean?

Critical Components in a Kubernetes Cluster
 Architecture of the control plane

Impacts of Limited Resources at an Edge location
 Making the best of limited budget and facilities

Kubernetes Configuration
 Defaults may not be appropriate for edge

Security
 Considerations for edge

Disaster Recovery & Backup
 Planning checklist

Futures
What does it mean to be “Production Grade”?
When you deploy to edge, you own 100% of this

- The installation is secure
- The deployment is managed with a repeatable and recorded process
- Performance is predictable and consistent
- Updates and configuration changes can be safely applied
- Logging and monitoring is in place to detect and diagnose failures and resource shortages
- Service is “highly available enough” considering available resources, including constraints on money, physical space, power, etc.
- A recovery process is available, documented, and tested for use in the event of failures

Photo attribution: By Tony Webster from Portland, Oregon, United States (212 days without recordable incident) [CC BY 2.0 (https://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons
Kubernetes Cluster Architecture

Kubernetes = a distributed system with a control plane and clustered worker nodes
Control Plane

Critical components

<table>
<thead>
<tr>
<th>component</th>
<th>role</th>
<th>effect of loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>etcd</td>
<td>Maintains state for all Kubernetes objects</td>
<td>Loss of storage catastrophic. Loss of quorum = Kubernetes loses control plane. Read only API calls might continue to work. Existing workloads may continue to run.</td>
</tr>
<tr>
<td>API server</td>
<td>Provides API used internally and externally</td>
<td>Can’t start, stop, update pods, services, replication controllers. Scheduler and Controller Manager down. Workloads continue if not dependent on API calls (operators, customer controllers, CRDs, etc.)</td>
</tr>
<tr>
<td>scheduler</td>
<td>Places pods on nodes</td>
<td>No pod placements, priority, preemption.</td>
</tr>
<tr>
<td>controller manager</td>
<td>Runs many controllers</td>
<td>Core control loops that regulate state cease</td>
</tr>
</tbody>
</table>
Keeping critical components available

The Risks:

• Hardware failures
• Software bugs
• Bad updates
• Human errors
• Network outages
• Intentional attacks
• Overloaded systems resulting in resource exhaustion
• Power, Cooling losses
• Weather

Recommendations:

• Use redundancy
 • Hardware
 • Software
• Enable rapid recovery
 • Backups
 • DR plans
 • Training and documentation
• Security
• Monitoring, Metrics, Logging
• Automate operations
 • Installs
 • Updates
On-premises deployments have finite resources even in public clouds, budget may limit what you choose to consume

Dreams & Goals

Resources

a tricky balance

Drawing attribution: By Б.Золзая [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
Kubernetes on a single hardware host
Operating on the edge in more ways than one

Minimum
- Hardware
 - Dual disks – mirrored
 - Dual fans
 - UPS

Recommended
- Hypervisor
 - 3 node Kubernetes control plane
 - Resource governance

- Hardware
 - Dual Power Supplies
 - ECC memory
 - 3 disks
Kubernetes on dual hardware hosts

etcd quorum must be an odd number
 • No real availability advantage to splitting etcd across 2 nodes - put all etcd instances on one node

Shared storage is advantageous for availability of control plane and workloads
 • External storage may be expensive
 • Software Defined storage will generally require a witness “2+1”
Kubernetes on 3 or more hardware hosts

recommendation

Put a control plane instance with etcd on each of 3 nodes

- Loss of a node reduces capacity but does not bring down Kubernetes, and is recoverable
Kubernetes configuration settings
Protect the system from resource overloads

Throttle things like:
- API call rates
- Pods per node

Reserve for system daemons

Recommended for predictable, repeatable behavior:
- Explicitly state resources on container specs
- Explicitly configure out of resource behavior on nodes
- Use namespace quotas
Security
Recommendations

• Certificates
 • Lock down worker nodes
• Use an image repository with governance & security features
• Utilize Pod Security Policies
• Use RBAC to drive authorization decisions and enforcement
• Consider physical security at edge locations
 • Storage encryption
 • Protection from attachment of malicious devices
• Avoid use of plain text credentials (access key, token, passwords)

• Consider security features when you choose your network solution
• Logging and monitoring/metrics can contribute to security
Disaster Recovery

Redundancy can help reduce outages but failures can still occur

DR plan elements:

- Backups
- Availability of replacements
- A planned process
 - People to carry it out
 - Training
 - Documentation of the procedure (runbooks)
 - Automation can help

Backup concerns

- etcd
- Stateful workload storage
- Certificates and keypairs
- DNS records
- IP/subnet assignments
- Config files
- Service accounts and creds

Photo attribution: US Air Force photo, B-24 in cloud with flak, No. 2 engine smoking
Final Thoughts + Roadmap
Kubernetes can be applied to edge - but doing so requires some care

There is opportunity to improve this
• Issues with scale
• Issues with control plane to worker node connectivity

Join the Kubernetes Edge IoT working group to get involved
• https://groups.google.com/forum/#!forum/kubernetes-wg-iot-edge

Photo attribution: By Matti Blume [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
Thank You
Questions

References:

Deck is here:

More detailed coverage can be found in this blog post:
https://kubernetes.io/blog/2018/08/03/out-of-the-clouds-onto-the-ground-how-to-make-kubernetes-production-grade-anywhere/

Contact me later:
Twitter: @cantbewong

Kubernetes Slack: steve-wong