
High Performance Cloud-native Networking
K8s Unleashing FD.io

Giles Heron

giheron@cisco.com
mkonstan@cisco.com

Maciek Konstantynowicz
Principal Engineer, Cisco FD.io CSIT Project Lead

Distinguished Engineer, Cisco

Jerome Tollet

jtollet@cisco.com
Distinguished Engineer, Cisco

DISCLAIMERs
• 'Mileage May Vary'

• Tests document performance of components on a particular test, in specific systems. Differences in
hardware, software, or configuration will affect actual performance. Consult other sources of information to
evaluate performance as you consider your opinion and investment of any resources. For more complete
information about open source performance and benchmark results referred in this material, visit
https://wiki.fd.io/view/CSIT and/or https://docs.fd.io/csit/rls1807/report/.

• Trademarks and Branding
• This is an open-source material. Commercial names and brands may be claimed as the property of others.

https://wiki.fd.io/view/CSIT
https://docs.fd.io/csit/rls1807/report/

Cloud

NFV

Internet Mega Trends

Scalability and Self-Healing

Portability and Efficiency

Software Defined Networking

Open Source Platforms

Cloud Native Designs

SDN

5 Pillars of Next Generation Software Data Planes

Blazingly Fast
• Process the massive explosion of East-West traffic
• Process increasing North-South traffic

Truly Extensible
• Foster pace of innovation in cloud-native networking
• No compromise on performance (zero-tolerance)

Software First
• Cloud means running everywhere
• Cloud means hardware and physical infra agnostic

Predictable performance
• Dataplane performance must be deterministic
• Predictable for a number of VMs, Containers,

virtual topology and (E-W, N-S) traffic matrix

FD.io VPP meets these challenges
How can one use it in large scale Cloud-native networks ?

Measureable
• Counters everywhere to count everything for detailed

cross-layer operation and efficiency monitoring
• Enables feedback loop to drive optimizations

Production-Grade Container Orchestration
• De facto standard for container orchestration
• Superior extensibility and self-healing

Performance Container Networking
• Seamless cloud-native integration
• Extends K8s with userspace networking

Cloud-native Network Micro-services
• Scalability, performance and agility
• Marries K8s with flexible network topologies

Fast Data Input/Output
• Most efficient on the planet
• Top performance, flexibility and extensibility

Cloud-native Networking Platform

LIGATO

Network-as-a-Service
Network-as-a-Service

NF Micro-Services

Micro-Services
Micro-Services

App Micro-Services

Contiv

High Performance Cloud-native Networking
K8s Unleashing FD.io

The Way Applications Are Developed and Deployed.. Has Changed..

Ti
m
e

The Way Networks are Deployed and Used… has Changed…

Internet Data-CenterCorporate LAN/WAN
”80:20 rule”

LAN WAN

Intranets & Internet

LAN WAN

Internet

WWW

SD-WAN & “BeyondCorp”

WiFi Internet

Cloud
Provider

VLAN 1 Core

Spine/Leaves & L3 Core/L2 Access
Tiered Transit & Private Peering

Tier1 –A Tier1 – B
Tier1 – C

Tier2 – D Tier2 – E Tier2 – F

Internet exchanges & public peering

Network 1 Network 2 Network 3

Telco/Cable Access &, OTT/CDN Content

Telco 1 Telco 2 MSO 1

Cloud Provider 1 Global Backbone

Core/Distr/Access, VLAN based

VLAN 1VLAN 2
VLAN n

VLAN 2 VLAN 2’Ti
m

e

Cloud Provider 2 Global Backbone

L3 Fabric/SW Overlay & Virt
Networking

Layer 3 Fabric

Microservices & Containers have changed many things…

• Microservices split applications into
modular pieces with the network
stitching the pieces together

• The interconnection of the pieces
increases ”East / West” traffic

• Network performance is therefore
critical to the composite application
performance

• Applications are being developed and deployed very differently today.

Pod

Pod

PodPod

Pod

Pod

Pod

Microservices & Containers have changed many things…

• How do application trends impact SDN / NFV?

Pod

Pod

PodPod

Pod

Pod

Pod

Traffic

Traffic

Traffic

Pod

Agent

VPP

Pod

Agent

VPP

Pod

Agent

VPP

Pod

Agent

VPP

Pod

Agent

VPP

Pod

Agent

VPP

Pod

Agent

VPP

Data Plane
Microservices

• Network Functions can be
implemented using containers

• The microservice model enables
decomposition of Network Functions
into finer-grained Cloud-native
Network Functions (CNFs)

• Since network functions are I/O
bound network performance is even
more critical than for applications

Remember 1965 ”Moore’s Law” – ..
MK MK

Electromechanical Solid-
state
Relay

Vacuum Tube Transistor Integrated Circuit
1010

106

104

102

1

10-2

10-4

10-6

Moore’s
Law 1965

108

Ca
lcu

lat
io

ns
 p

er
 Se

co
nd

 p
er

 $
1,

00
0

Resources to Get Performance
1) Processor and CPU cores

for performing packet processing operations
_
_
_

2) Memory bandwidth
for moving data (packets, lookup) and
instructions (packet processing)

3) I/O bandwidth
for moving packets to/from NIC interfaces
_

4) Inter-socket bandwidth
for handling inter-socket operations
_

Processing Packets: How to Use Compute ..

Socket 0

Skylake
Server CPU

Socket 1

Skylake
Server CPU

UPI

UPI

PCIe

DDR4 DDR4

DDR4

SATA

B
I
O
S

1

4

3

2

3

1

2

DDR4

DMI

PCH

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

PC
Ie

x16

PC
Ie

x16

PC
Ie

x16

PC
Ie

x16
PC

Ie
x16

PC
Ie

x16

UPI

280 Gbps
@ 1,000Bytes ETH frames

100GE 100GE100GE100GE 100GE100GE

280 Gbps
@ 1,000Bytes ETH frames

Tℎ#$%&ℎ'%([*'+] = Tℎ#$%&ℎ'%(''+ ∗ /0123(_5673[''+]

CyclesPerPacket		[ClockCycles]	= #FGHIJKLIMNGH
OPLQRI

∗ #STLURH
FGHIJKLIMNG

Tℎ#$%&ℎ'%([''+] = V
]OPLQRI_OJNLRHHMGW_XMYR[HRL
=

]SOZ_[JR\[]^
STLURH__RJ_OPLQRI

1

2

3

4

MK MK

Socket 0

Skylake
Server CPU

Socket 1

Skylake
Server CPU

UPI

UPI

PCIe

DDR4 DDR4

DDR4

SATA

B
I
O
S

1

4

3

2

3

1

2

DDR4

DMI

PCH

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

PC
Ie

x16

PC
Ie

x16

PC
Ie

x16

PC
Ie

x16
PC

Ie
x16

PC
Ie

x16

UPI

280 Gbps
@ 1,000Bytes ETH frames

100GE 100GE100GE100GE 100GE100GE

280 Gbps
@ 1,000Bytes ETH frames

Tℎ#$%&ℎ'%([*'+] = Tℎ#$%&ℎ'%(''+ ∗ /0123(_5673[''+]

CyclesPerPacket		[ClockCycles]	= #FGHIJKLIMNGH
OPLQRI

∗ #STLURH
FGHIJKLIMNG

Tℎ#$%&ℎ'%([''+] = V
]OPLQRI_OJNLRHHMGW_XMYR[HRL
=

]SOZ_[JR\[]^
STLURH__RJ_OPLQRIMoore’s Law in Action

Resources to Get Performance
1) Processor and CPU cores

FrontEnd: faster instr. decoder (4- to 5-wide)
BackEnd: faster L1 cache, bigger L2 cache,
deeper OOO* execution
Uncore: move from ring to X-Y fabric mesh

2) Memory bandwidth
~50% increase: channels (4 to 6), speed (DDR-
2666)

3) I/O bandwidth
>50% increase: PCIe lanes (40 to 48), re-
designed IO blocks

4) Inter-socket bandwidth
~60% increase: QPI to UPI (2x to 3x), interface
speed (9.6 to 10.4 GigTrans/sec)

1

2

3

4

Processing Packets: What Improves in Compute ..

MK MK

FD.io VPP – The “Magic” of Vectors
Compute Optimized SW Network Platform

1
Packet processing is decomposed
into a directed graph of nodes …

Packet 0

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Packet 7

Packet 8

Packet 9

Packet 10

… packets move through
graph nodes in vector …2

Microprocessor

… graph nodes are optimized
to fit inside the instruction cache …

… packets are pre-fetched
into the data cache.

Instruction Cache3

Data Cache4

3

4

Makes use of modern Intel® Xeon® Processor micro-architectures.
Instruction cache & data cache always hot è Minimized memory latency and usage.

vhost-user-
input

af-packet-
input dpdk-input

ip4-lookup-
mulitcast ip4-lookup*

ethernet-
input

mpls-input
lldp-input

arp-inputcdp-input
...-no-

checksum

ip6-inputl2-input ip4-input

ip4-load-
balance

mpls-policy-
encap

ip4-rewrite-
transit

ip4-
midchain

interface-
output

* Each graph node implements a “micro-NF”, a “micro-NetworkFunction” processing packets.

MK MK

K8s perspective: Orchestation/K8s
incl. placement for scale-out
• We have all of this performance, how do we use it

• How do we make it work for us at scale

• How do we intelligently make an efficient use of available
resource to deliver intended application and networking
services

MK MK

LIGATOContiv

Cloud-native Network Micro-Services
For Native Cloud Network Services

Production-Grade
Container Orchestration

Cloud-native Network Function
Orchestration

Containerized Fast
Data Input/ Output

Performance-Centric
Container Networking

Enabling Production-Grade Native Cloud Network Services at Scale

MK GH

• ”Kubernetes is a portable, extensible open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation.”

• Terminology:
• Node: a host or VM on which pods can be scheduled
• Pod: one or more co-resident linux containers with a single IP address

(typically a /24 of address space is provided per node)
• Deployment: a set of pods implementing the same application
• Service: an abstraction providing a single persistent IP address for a deployment

(Kubernetes provides mechanisms to load balance across multiple pods)

• Kubernetes assumes seamless connectivity between pods, wherever it places them
• A networking plugin is needed to abstract the network

Kubernetes Overview

GH GH

• Contiv-VPP is a networking plugin for Kubernetes that:
• Allocates IP addresses to Pods (IPAM)
• Programs the underlying infrastructure it uses (VPP and the Linux TCP/IP stack) to

connect the pods to other pods in the cluster and/or to the external world
• Implements K8s network policies that define which pods can talk to each other
• Implements K8s services using a stateful load-balanced NAT function

• Contiv-VPP is a user-space, high-performance, high-density networking plugin for
Kubernetes - leveraging FD.io/VPP as the industry’s highest performance software
data plane

Contiv-VPP Overview

GH GH

Kubelet

CNI

tapv2/veth

Contiv-VPP vswitch

Agent

Pod
Pod

Pod

VPP

…

K8s Master

Data Centre Fabric

App

Kernel Host stack

Legacy Apps K8s State

Reflector

Contiv-VPP

Etcd

Kubelet

CNI

tapv2/veth

Contiv-VPP vswitch

Agent

Pod
Pod

Pod

VPP

App

Kernel Host stack

High Performance
Apps

Pod
Pod

Pod

Envoy Sidecar App

VPP

TCP

Stack

Pod
Pod

Pod

High Performance
Apps

Envoy SidecarApp

VPP

TCP

Stack
memif

Legacy Apps

Pod
Pod

Pod

CNF

memif

Cloud-Native
NFs

Pod
Pod

Pod

CNF

Cloud-Native
NFs

K8s policy & state

distribution

Contiv-VPP Architecture

• Can deliver complete container networking solution entirely
from user-space

• Replace all eth/kernel interfaces with memif/user-space

interfaces.

• Apps can add VCL library for Higher Performance (bypass

Kernel host stack and use VPP TCP stack)

• Legacy apps can still use the kernel host stack in the same
architecture

GH GH

• Networking
• HTTP or NAT-based load balancing isn‘t suitable for NFV use-cases
• No support for multiple interfaces or IP addresses per pod
• No support for high-speed wiring of NFs

• Policy
• No support for QoS, network-aware placement etc.

• Isolation
• Applications run in user-space – kernel networking is unsuited to NFV

• Performance
• Polling mode drivers (e.g. DPDK) required for maximum throughput

What Container Networking Lacks for NFV
Use-Cases

GH GH

Topology
Placement

(K8s)
Rendering

NF1 NF2 NF3

Logical Representation
Ingress Network

Ingress Classifier

Egress Network

Egress Classifier

Ingress
Router

Egress
Router

Host

VPP Vswitch

CNF

VPP

10.1.0.127

…

CNF1

VPP

…

CNF2

VPP

…

…
Server

Vswitch VPP

CNF

VPP

…

CNF

VPP

…

CNF3

VPP

…

…

Overlay Tunnel

Physical Representation

Overlay Tunnel Overlay Tunnel

Ingress Classifier Egress Classifier

Service Function Chaining with Ligato

GH GH

Kubelet

CNI
CRI

tapv2/veth

Contiv-VPP vswitch

Agent

PodPod
PodPodPod

Pod

VPP

Data Centre Fabric

High Performance
Apps

Sidecar Proxy App

VPP
TCP
Stack

App

Kernel Host stack

Legacy Apps

• Kubernetes does not provide a way to stitch micro-services together today
• Ligato enables you to wire the data plane together into a service topology
• Network functions can now become part of the service topology
• Dedicated Telemetry Engine in VPP to enable closed-loop control
• Offload functions to NIC but via vSwitch in host memory

Contiv-VPP Etcd

K8s Master

Contiv-VPP
Netmaster

Define
Topology

Ligato
Controller

Define
Services

Define
Topology

Ligato – Cloud-native NFs (CNFs)

Smarts in NICs

Telemetry
Engine

Back Propagation Loop
For Reactive Placement/Rsrc Mgmt

PodPod
Pod

memif

Cloud-Native
VNFs

Agent

VPP

GH GH

Unleashing Innovation in Networking
• Container networking requires fast innovation cycles to deploy new models
• Kernel upgrades and ad hoc modules may cause problems in production environments
• Multiple options are being explored in the industry

Technology Programmability Model Execution Context
OVS OpenFlow lets users configure very granular

data path behaviour
Primarily kernel based
Openflow model

eBPF+XDP Packets handled by user coded eBPF
programs running in a sandbox

Bypass kernel networking stack but still in
kernel-mode
Bytecode + JIT + kernel helpers

FD.io / VPP Regular user-mode C program with user
loadable plugins

User-mode, no kernel dependencies
Native NIC drivers, Linux APIs, DPDK

JT GH

Baremetal Data Plane Performance Limit
FD.io benefits from increased Processor I/O

YESTERDAY

Intel® Xeon® E5-2699v4
22 Cores, 2.2 GHz, 55MB Cache

Network I/O: 160 Gbps
Core ALU: 4-wide parallel µops
Memory: 4-channels 2400 MHz
Max power: 145W (TDP)

1

2

3

4

Socket 0

Broadwell
Server CPU

Socket 1

Broadwell
Server CPU

2

D
D

R
4

QPI

QPI

4

2

D
D

R
4

D
D

R
4

P
C

Ie P
C

Ie

P
C

Ie

x8 50GE

x16 100GE

x16 100GE

3

1

4

P
C

Ie P
C

Ie

x8 50GE

x16 100GE

Ethernet

1

3D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

SATA

B
I
O
S

PCH

Intel® Xeon® Platinum 8168
24 Cores, 2.7 GHz, 33MB Cache

TODAY

Network I/O: 280 Gbps
Core ALU: 5-wide parallel µops
Memory: 6-channels 2666 MHz
Max power: 205W (TDP)

1

2

3

4

Socket 0

Skylake
Server CPU

Socket 1

Skylake
Server CPU

UPI

UPI

DDR4 DDR4

DDR4

P
C

Ie

P
C

Ie

P
C

Ie P
C

Ie

P
C

Ie

P
C

Ie

x8 50GE

x16 100GE

x8 50GE

x16 100GE

x16 100GE

SATA

B
I
O
S

2

4

2

1

3

1

4

3

x8 50GE

DDR4

P
C

Ie

x8 40GE

Lewisburg
PCH

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

0 200 400 600 800 1000 1200

160

280

320

560

640

Server
[1 Socket]

Server
[2 Sockets]

Server
2x [2 Sockets]

+75%

+75%

PCle Packet Forwarding Rate [Gbps]

Intel® Xeon® v3, v4 Processors Intel® Xeon® Platinum 8180 Processors

1,120*
Gbps+75%

* On compute platforms with all PCIe lanes from the Processors routed to PCIe slots.

Breaking the Barrier of Software Defined Network Services
1 Terabit Services on a Single Intel® Xeon® Server !

FD.io Takes Full Advantage of Faster
Intel® Xeon® Scalable Processors

No Code Change Required

https://goo.gl/UtbaHy

MK MK

https://goo.gl/UtbaHy

24

Scalability and Self-healing

Most Portable and Most Efficient
on the Planet

Rich NFV Functionality

Open Source

Cloud Native

SOFTWARE DEFINED NETWORKING

CLOUD NETWORK SERVICES

LINUX FOUNDATION

PORTABILITY AND EFFICIENCY

SCALABILITY and SELF-HEALING

High Performance Cloud-Native Networking
K8s Unleashing FD.io

MK MK

High Performance Cloud-Native Networking
K8s Unleashing FD.io

THANK YOU !

MK MK GH

