High Performance Cloud-native Networking
K8s Unleashing FD.io

Giles Heron
Principal Engineer, Cisco
giheron@cisco.com

Maciek Konstantynowicz
FD.io CSIT Project Lead
Distinguished Engineer, Cisco
mkonstan@cisco.com

Jerome Tollet
Distinguished Engineer, Cisco
jtollet@cisco.com
DISCLAIMERs

• 'Mileage May Vary'
 • Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your opinion and investment of any resources. For more complete information about open source performance and benchmark results referred in this material, visit https://wiki.fd.io/view/CSIT and/or https://docs.fd.io/csit/rls1807/report/.

• Trademarks and Branding
 • This is an open-source material. Commercial names and brands may be claimed as the property of others.
Internet Mega Trends – ..

- Portability and Efficiency
- Scalability and Self-Healing
- Software Defined Networking
- Cloud Native Designs
- Open Source Platforms

Cloud, NFV, SDN
THE SOFTWARE DEFINED OPERATOR

DO YOU REMEMBER .. ?
5 Pillars of Next Generation Software Data Planes

Blazingly Fast
• Process the massive explosion of East-West traffic
• Process increasing North-South traffic

Truly Extensible
• Foster pace of innovation in cloud-native networking
• No compromise on performance (zero-tolerance)

Software First
• Cloud means running everywhere
• Cloud means hardware and physical infra agnostic

Predictable performance
• Dataplane performance must be deterministic
• Predictable for a number of VMs, Containers, virtual topology and (E-W, N-S) traffic matrix

Measureable
• Counters everywhere to count everything for detailed cross-layer operation and efficiency monitoring
• Enables feedback loop to drive optimizations

FD.io VPP meets these challenges
How can one use it in large scale Cloud-native networks?
The Way Applications Are Developed and Deployed Has Changed.

- Development Process:
 - Waterfall
 - Agile
 - DevOps

- Application Architecture:
 - Monolithic
 - N-Tier
 - Microservices

- Deployment & Packaging:
 - Physical Servers
 - Virtual Servers
 - Containers

- Application Infrastructure:
 - Datacenter
 - Cloud
 - Serverless / FaaS
The Way Networks are Deployed and Used… has Changed…

Corporate LAN/WAN

- "80:20 rule"
- Intranets & Internet
- SD-WAN & “BeyondCorp”

Internet

- Internet exchanges & public peering
- Tiered Transit & Private Peering
- Telco/Cable Access & OTT/CDN Content

Data-Center

- Core/Distr/Access, VLAN based
- Spine/Leaves & L3 Core/L2 Access
- L3 Fabric/SW Overlay & Virt Networking
Aside: A Trip Down Memory Lane (Transporting Data vs. Processing Data)

• **Year 2012**
 - Internet service provider comment at IETF: *processing bits is cheaper* than transporting bits, computing and networking - networking is becoming 1st order citizen on compute platforms.

• **Year 2013**
 - RIPE67 Terastream been fixing the cost of transporting bits - 96 of 100GE coherent lambdas per fibre span - *transporting is getting cheaper*, so challenging the compute part again
 - more bandwidth delivered to Data Centres
 - **Most/all network services in Data Dentres**

 https://ripe67.ripe.net/archives/video/3/
 https://ripe67.ripe.net/presentations/131-ripe2-2.pdf
Remember **1965** "Moore’s Law" – ..
Remember 1965 "Moore’s Law" –..
Remember 1965 "Moore’s Law" – Is It Still Applicable?

Remember **1965** "Moore’s Law" – Is It Still Applicable?

Remember **1965** "Moore’s Law” – Yes, It Surely Is ..

“Ramble On ..”

Processing Packets: How to Use Compute..
Processing Packets: What Improves in Compute ..

Resources to Get Performance

1. **Processor and CPU cores**
 - **FrontEnd**: faster instr. decoder (4- to 5-wide)
 - **BackEnd**: faster L1 cache, bigger L2 cache, deeper OOO* execution
 - **Uncore**: move from ring to X-Y fabric mesh

2. **Memory bandwidth**
 - ~50% increase: channels (4 to 6), speed (DDR-2666)

3. **I/O bandwidth**
 - >50% increase: PCIe lanes (40 to 48), re-designed IO blocks

4. **Inter-socket bandwidth**
 - ~60% increase: QPI to UPI (2x to 3x), interface speed (9.6 to 10.4 GigTrans/sec)

Moore’s Law in Action

\[
\text{Throughput [bps]} = \text{Throughput[pps]} \times \text{Packet Size[pps]}
\]

\[
\text{CyclesPerPacket [ClockCycles]} = \frac{\#\text{Instructions Packet}}{\#\text{Cycles instruction}}
\]
FD.io VPP – Vector Packet Processing
Compute-Optimised SW Networking Platform

Packet Processing Software Platform
- High performance
- Linux user space
- Runs on compute CPUs:
 - And “knows” how to run them well!

Shipping at volume in server & embedded products
Packet processing is decomposed into a directed graph of nodes …

… packets move through graph nodes in vector …

… graph nodes are optimized to fit inside the instruction cache …

Makes use of modern Intel® Xeon® Processor micro-architectures. Instruction cache & data cache always hot ➞ Minimized memory latency and usage.

* Each graph node implements a “micro-NF”, a “micro-NetworkFunction” processing packets.
Cloud-native Network Micro-Services
For Native Cloud Network Services

- **Production-Grade Container Orchestration**
 - Kubernetes
 - Contiv

- **Performance-Centric Container Networking**
 - SFC Controller
 - Contiv Netmaster

- **Cloud-native Network Function Orchestration**
 - LIGATO

- **Containerized Fast Data Input/Output**
 - FD.io VPP
 - Containerized Networking

Enabling Production-Grade Native Cloud Network Services at Scale

- **Service Policy**
- **Service Topology**
- **Lifecycle**

Production-Grade Container Orchestration

Network Function and Network Topology Orchestration

Containerized Network Data Plane

Networking Plugin

Kubelet
Contiv-VPP Architecture
Service Function Chaining with Ligato
Ligato – Cloud-native NFs (CNFs)

- Kubernetes does not provide a way to stitch micro-services together today
- Ligato enables you to wire the data plane together into a service topology
- Network functions can now become part of the service topology
- Dedicated Telemetry Engine in VPP to enable closed-loop control
- Offload functions to NIC but via vSwitch in host memory
“Without data, you're just another person with an opinion.” — W. Edwards Deming
Open Source Benchmarking – Guiding Principles

- Discover the \textit{limits} and \textit{know them}
- Assess based on \textit{externally measured data} and behavior (black-box)
- Guide benchmarking by \textit{good understanding} of the whole system (white-box)
- Provide a feedback loop to hardware and software engineering

“One can’t violate the laws of physics, but one can ‘stretch’ them..”
Benchmarking Data and Public References:

FD.io CSIT-CPL
Per release test and performance reports

- **Multi-Platform/-Vendor**
 - Intel & ARM (WiP)
- **Packet Throughput & Latency**
 - Non-Drop & Partial Drop Rates
- **Data Plane Workloads**
 - FD.io VPP
 - DPDK L3fwd, Testpmd
- **Scaling**
 - Single-, Multi-Core
 - MACs, IPs, Flows, ACLs etc.
- **Performance Test Suites (#s)**
 - L2: 58
 - L3 (IPv4 / IPv6): 63
 - VM vhostuser: 26
 - Containers memif: 10
 - Crypto: 13
 - SRv6: 3
 - Total: 173

![1T/1C x520 Packet Throughput Tests *](https://docs.fd.io/csit/rls1807/report/index.html)

Newer data available !!

Benchmarking Data and Public References:

- https://docs.fd.io/csit/rls1801/report/index.html

* Selection of testcases from the FD.io CSIT 18.01, 17.10 and 17.07 reports
FD.io CSIT-18.07: Packet Throughput Results

IPv4 Routing (ip4)
- Baseline
- 200k of /32 hFIB prefixes
- 20k of /32 hFIB prefixes
- 2M of /32 hFIB prefixes

L2 Switching with MAC Learning (I2bd)
- Baseline
- 100k of /48 L2FIB MACs
- 10k of /48 L2FIB MACs
- 1M of /48 L2FIB MACs

Source: https://docs.fd.io/csit/rls1807/report/
FD.io CSIT-18.07: Throughput Speedup Results

VPP Multi-Core Speedup Properties:
- Predictable performance
- Linear scaling with cores
- Follows Amdahl’s Law

* Capped by 14.88 Mpps
10GE 64B link rate limit

Source: https://docs.fd.io/csit/rls1807/report/
VPP: Multi-Core Speedup Properties

VPP Multi-Core Speedup Properties:

- Predictable performance
- Linear scaling with cores
- Follows Amdahl’s Law

Figure 14. Packet throughput speedup with Multithreading and Multi-core.
Packet Vectors are Good for You!

Netgate shipping product(s) [1]

Netgate: TNSR, hw appliances

Alibaba [2]

Alibaba: Network Service Optimization with the VPP Platform

David S. Miller @davem_dokebi · Jul 4

A sort of "VPP" for the Linux kernel networking stack is now in net-next, thanks to Edward Cree: git.kernel.org/pub/scm/linux/…
Baremetal Data Plane Performance Limit
FD.io benefits from increased Processor I/O

YESTERDAY
- Intel® Xeon® E5-2699v4
- 22 Cores, 2.2 GHz, 55MB Cache
- Network I/O: 160 Gbps
- Core ALU: 4-wide parallel µops
- Memory: 4-channels 2400 MHz
- Max power: 145W (TDP)

TODAY
- Intel® Xeon® Platinum 8168
- 24 Cores, 2.7 GHz, 33MB Cache
- Network I/O: 280 Gbps
- Core ALU: 5-wide parallel µops
- Memory: 6-channels 2666 MHz
- Max power: 205W (TDP)

FD.io Takes Full Advantage of Faster Intel® Xeon® Scalable Processors
No Code Change Required

1 Terabit Services on a Single Intel® Xeon® Server!

https://goo.gl/UtbaHy
Internet Mega Trends – ..
Internet Mega Trends – *Being* Addressed ..
Internet Mega Trends – *Being* Addressed..

- **Portability and Efficiency**
 - Public, private, hybrid, any-cloud. Over 10 times faster Container networking vs. alternatives.

- **Scalability and Self-healing**
 - Follows Kubernetes scale and self-healing principles.

- **Software Defined Networking**
 - FD.io VPP, the Fastest SW Data Plane on the Planet. Over 200 programmable “micro-NFs” and plugins.

- **Cloud Native Designs**
 - Containerized NFs managed as true cloud-native apps, provide and consume dat plane microservices.

- **Open Source Platforms**
 - Based on the best-of-breed collaborative projects in Linux Foundation.
High Performance Cloud-Native Networking
K8s Unleashing FD.io

THANK YOU!
References

FD.io VPP, CSIT and related projects

- VPP: https://wiki.fd.io/view/VPP
- CSIT-CPL: https://wiki.fd.io/view/CSIT
- pma_tools - https://wiki.fd.io/view/Pma_tools

Benchmarking Methodology

Opportunities to Contribute

We invite you to Participate in **FD.io**

- Get the Code, Build the Code, Run the Code
- Try the vpp user demo
- Install vpp from binary packages (yum/apt)
- Read/Watch the Tutorials
- Join the Mailing Lists
- Join the IRC Channels
- Explore the wiki
- Join FD.io as a member

Thank you!