
Deep dive with no fear

Viktor Turbinskii
@devopsv

Who Am I?

Victor Turbinsky

DevOps Engineer

at

● Russian Engineer living in
Cork, Ireland

● Started IT career in 2005,
as System Administrator, same
time studying in university.

● Networking/*BSD systems
background

● Now - Systems engineer with
common DevOps duties:
₋ Infrastructure as a code using

mostly Terraform, Ansible, Bash,
Python

₋ CI/CD with Jenkins
₋ Docker, Kubernetes
₋ Security and disaster recovery

Texuna

Texuna
● Data management solutions

● Vendor neutral systems Integrator

● Data Warehouses

● Founded in London in 2000

● Some of our larger clients include:

− The Department for Education

− National College for Teaching and

Leadership

− Jisc (digital solutions for UK education

and research)

− Higher Education Funding Council for

England.

texuna.com

Outline of the presentation

● Terraform overview

● Quick comparison with other tools

● Terraform Architecture overview

● From simple cases to complex adoption scenarios

● Providers, Provisioners, Modules and Terraform Modules Registry

● Debug, security options, sensitive managing, gotchas

● HCL v2 - HashiCorp configuration language

● Power of community and Tools around

● Learning material, How and where to dive deeper ?

● Summary, Q & A

Terraform

● A provisioning declarative tool that based on Infrastructure
as a Code paradigm

● Uses own syntax - HCL (Hashicorp Configuration
Language)

● Written in Golang.
● Helps to evolve you infrastructure, safely and predictably
● Applies Graph Theory to IaaC
● Terraform is a multipurpose composition tool:

○ Composes multiple tiers (SaaS/PaaS/IaaS)
○ A plugin-based architecture model

● Open source. Backed by Hashicorp company and
Hashicorp Tao (Guide/Principles/Design)

Overview

Terraform: GitHub Stats

Source: GitHub
https://github.com/hashicorp/terraform

Other tools

● Cloudformation, Heat, etc.

● Ansible, Chef, Puppet, etc.

● Boto, fog, apache-libcloud, etc.

● Custom tooling and scripting

AWS Cloudformation / OpenStack Orchestration (Heat)

● AWS Locked-in
● Initial release in 2011
● Sources hidden behind a scene
● AWS Managed Service / Free
● Cloudformation Designer

○ Drag-and-drop interface.

● Json, Yaml (since 2016)
● Rollback actions for stack

updates
● Change sets (since 2016)

Comparison

● Open source
● Initial release around 2012
● Heat provides

CloudFormation-compatible
Query API for Openstack

● UI: Heat Dashboard
● Yaml

Ansible, Chef, Puppet, etc
● Created for the purpose to be a configuration management tool.
● Suggestion: don’t try to mix configuration management and resource

orchestration.
● Different approaches:

○ Declarative: Puppet, Salt
○ Imperative: Ansible, Chef

● The steep learning curve if you want to use orchestration capabilities of some
of these tools.

● Different languages and approaches:
○ Chef - Ruby
○ Puppet - Json-like syntax / Ruby
○ Ansible - Yaml

Comparison

Boto, fog, apache-libcloud, etc.
● low-level access to APIs
● Some libs focused on specific cloud providers, others provide common

interface for few different clouds
● Inspires to create custom tooling

Custom tooling and scripting
● Error-prone and tedious
● Requires many human-hours
● The minimum viable features
● Slowness or impossibility to evolve, adopt to quickly changing environments

Terraform is not a cloud agnostic tool

It’s not a magic wand that gives you power
over all clouds and systems.

It embraces all major Cloud Providers and provides common
language to orchestrate your infrastructure resources.

Terraform: Example (Simple resource)

Type Name

example

Terraform: Example (Simple local resource)
example

“There ain't nothing up there
but pain and suffering

on a scale you can't even imagine.”

It’s just a single Module!

https://github.com/coreos/terraform-aws-kubernetes

Architecture

Simple workflow

Terraform Core: Init

1. This command will never delete your existing configuration or state.
2. Checkpoint → https://checkpoint.hashicorp.com/
3. .terraformrc → enable plugin_cache_dir, disable checkpoint
4. Parsing configurations, syntax check
5. Checking for provisioners/providers (by precedence, only once)→

“.”, terraform_bin_dir, terraform.d/plugins/linux_amd64
.terraform/plugins/linux_amd64

6. File lock.json contains sha-512 plugin hashes (.terraform)
7. Loading backend config (if it’s available, local instead)

Backend Initialization: Storage for terraform state file.

example

https://checkpoint.hashicorp.com/

Terraform Core: Plan + Apply

1. Starting Plugins: Provisioners/Providers
2. Building graph

a. Terraform core traverses each vertex and requests each provider using parallelism

3. Providers syntax check: resource validation
4. If backend == <nil>, use local
5. If “-out file.plan” provided - save to file - the file is not encrypted
6. Terraform Core calculates the difference between the last-known state and

the current state
7. Presents this difference as the output of the terraform plan operation to user

in their terminal

Terraform Core: Destroy

1. Measure twice, cut once

2. Consider -target flag

3. Avoid run on production

4. No “Retain” flag - Remove resource from state file instead

5. terraform destroy tries to evaluate outputs that can refer to non existing

resources #18026

6. prevent_destroy should let you succeed #3874

7. You can’t destroy a single resource with count in the list

Terraform Backends

● Locking

● Workspaces (former known as environments)

● Encryption at rest

● Versioning

● Note: Backend configuration doesn’t support interpolations.

Azure Blob
AWS S3 Google Cloud

Storage

Terraform: Providers (Plugins)
125+ infrastructure providers

Major Cloud Partners

Terraform: Providers (Plugins)

● Abstraction above the upstream API
● Invoke only upstream APIs for the basic CRUD operations
● Providers are unaware of anything related to configuration loading, graph

theory, etc.
● Consume an external client library (don’t try to implement client library itself,

modularize)
○ aws-sdk-go
○ azure-sdk-for-go
○ k8s.io/apimachinery
○ k8s.io/client-go
○ ...

Terraform: Providers (Plugins)
Can be integrated with any API using providers framework

○ Note: Terraform Docs → Extending Terraform → Writing Custom Providers

● Docker
● Kubernetes
● Nomad
● Consul
● Vault
● Terraform :)

● Digital Ocean
● Fastly
● OpenStack
● Heroku

● DNS
● Palo Alto Networks
● F5 BIG-IP

● NewRelic
● Datadog
● PagerDuty

● GitLab
● GitHub
● BitBucket

● Template
● Random
● Null
● External

(escape hatch)
● Archive

● OpenFaaS
● OpenAPI
● Generic Rest API
● Stateful

Terraform Provisioners

● Run code locally or remotely on resource creation

● Resource is tainted if provisioning failed. (next apply it will be re-created

● You can run code on deletion. If it fails - resources are not removed

● file

● local-exec

● remote-exec

null_resource +

masterless

Workflow: Adoption stages

Single
contributor

Workflow: Adoption stages

Team
Collaboration

Workflow: Adoption stages

Multiple
Teams

Workflow: Modules

● Code reuse
● Apply versioning
● Use version constraints
● Store code remotely
● Easier testing
● Encapsulation
● Use and contribute to Module Registry

Workflow: Modules

● Clean and flexible code
● Well presented default values
● Covered with tests
● Examples
● Documentation
● Changelog
● Secure

What is the good terraform module?

Do not overload modules with features:
Terraform does cloning everything

Debug
● TF_FORK=0

add an environment variable to prevent forking #8795

● TF_LOG → TRACE, DEBUG, INFO, WARN or ERROR

● TF_LOG_PATH

● Found a bug? Report to the right place:

○ Check GitHub, it’s highly likely a known bug/”feature”

○ https://github.com/hashicorp/terraform - Core Issues

○ https://github.com/terraform-providers - Provider Plugins

○ Check Golang SDK’s bugs

○ Check Cloud provider documentation

● Don’t forget to obfuscate your crash log :)

● Use delve debugger to learn how Terraform core works!

https://github.com/hashicorp/terraform
https://github.com/terraform-providers

Terraform state file

1. Backup your state files + use Versioning and Encryption
2. Do Not edit manually!
3. Main Keys: cat terraform.tfstate.backup | jq 'keys'

a. "lineage" - Unique ID, persists after initialization
b. "modules" - Main section
c. "serial" - Increment number
d. "terraform_version" - Implicit constraint
e. "version" - state format version

4. Use “terraform state” command
a. mv - to move/rename modules
b. rm - to safely remove resource from the state. (destroy/retain like)
c. pull - to observe current remote state
d. list & show - to write/debug modules

Terraform tips
1. Use terraform console

a. echo "random_string.new.result" | terraform console

2. Use workspaces for simple scenarios

3. Isolate state files and don’t use workspaces :)

4. To review output from terraform modules:

terraform output -module=mymodule

5. My state is changed every time when I’m running terraform with different

users! (binary files/lambda functions)
a. substr("${path.module}"/, length(path.cwd) + 1, -1)

b. ignore_changes = ["filename"]

Terraform: common workflow issues

1. Mess up with workspaces
2. Hard-coded values
3. Not following naming convention (tags)
4. TF can’t detect changes to computed values
5. Renaming modules, resources
6. Double references
7. Syntax problems
8. Variable “somevar” should be type map, got list
9. Timeouts

10. Permissions

Terraform: Sensitive information

1. terraform plan “-out plan-latest” - is not secured
2. terraform state - not secured.

a. Encryption on backend at rest
b. terraform pull - exposes sensitive
c. use data sources - grant only what you need

3. Data remote state - Not possible to expose just single or few outputs
4. Sensitive output
5. Encrypt tfvars
6. terraform output sensitive = true

a. seems ok? remote_secured = <sensitive>
b. terraform refresh → exposed, remote_secured = 79e6

Terraform: Sensitive information

1. How to handle secrets in state file?
a. Terrahelp - https://github.com/opencredo/terrahelp
b. Don’t store secrets :) Use:

i. AWS/Google Cloud/Azure Key Vault/ etc. KMS -like + user-data mechanisms
ii. AWS System Manager Parameter store
iii. AWS Secrets manager
iv. Use resource Roles
v. If set master-password for DB service - change it after creation.

2. Secure state at rest using backend built-in encryption
3. Secure tfvars and other project/module specific information with:

a. pass - The password store - https://www.passwordstore.org/
b. git-crypt - https://github.com/AGWA/git-crypt

https://github.com/opencredo/terrahelp
https://www.passwordstore.org/
https://github.com/AGWA/git-crypt

Terraform: Gotchas?

1. output and values don’t support count
2. How to output resource with count 0 (ugliest hell)

a. https://github.com/hashicorp/terraform/issues/16726
b. https://github.com/hashicorp/terraform/issues/17425

3. Setup caching and disable checkpoint in terraformrc
4. Use autocomplete and zsh
5. Use Constraints: it is recommended to constrain the acceptable provider

versions via configuration, to ensure that new versions with breaking changes
will not be automatically installed by terraform init in future
a. Use constraints for everything !

https://github.com/hashicorp/terraform/issues/16726
https://github.com/hashicorp/terraform/issues/17425

Terraform: Gotchas?
1. Do not overuse “Depends_on”

a. Use implicit dependencies via interpolation expressions
b. Explicit dependencies are required rarely, often with null-resources/custom providers/etc.

2. Do not overuse terraform import (at least for now - 0.11/0.12)
a. better is to create resources from scratch
b. it doesn’t generate code for you

3. Share some parts of infrastructure using “data terraform_remote_state"
a. Consider to use data resources for the same purpose

4. Do not overuse “workspaces” (former environments)
a. they don’t have straightforward workflow
b. you can’t use different backends

5. Enjoy clean code! Automate it: terraform fmt, pre-commit-terraform
https://github.com/antonbabenko/pre-commit-terraform

https://github.com/antonbabenko/pre-commit-terraform

Terraform: Gotchas?

1. Data sources can lock tfstate
2. Overrides: *override.tf - can be used to temporarily adjust your infra in CI
3. Modules don’t have count, but you can have variable and count internally in

the module.
4. Terraform extensively uses TempFile() to store temp data during the run-time:

/tmp/terraform-log#########
/tmp/state-*

5. Prevent_Destroy behaviour:
set prevent_destroy - works? Try to remove resource… (don’t…)
Use “terraform state rm” type.resource.name

Terraform challenges and how can you help?

● More Providers: Networking, New Cloud Service Providers,
On-premise systems

● Improving quality of current providers, new features, testing.
● Modules
● Importing resources
● New provisioners support
● Storing sensitive information
● Splitting monoliths → More tools

Long winding road to 0.12

● Modules attributes:
○ "providers" - provider inheritance for modules
○ "version" - constraints

● Interactive “terraform apply”
● Interpolation improvements, new features:

○ timeadd
○ rsadecrypt

● Myriad bug fixes
● Improvements:

○ Backends
○ CLI
○ Provisioners

● Many issues are on-hold till 0.12 version is released

0.11.x → 0.12.x

Terraform: 0.12 New Features

● Better error messages
● Reliable JSON Syntax - 1:1 mapping to Json

○ Comments in JSON

● Template Syntax Improvements
● Rich and Complex Value Types

○ Return Module resources as Object values
○ Maps of Maps? It’s possible!

● Conditionally Omitted Arguments
● Conditional Operator Improvements
● Splat Operator
● For and For-Each - Finally! - For nested blocks!

examples

Terraform issues:

● Support count in resource fields #7034 (For / For-Each → 0.12)
● depends_on cannot be used in a module #10462

○ Proposal: Module-aware explicit dependencies #17101 (freezed, ~ 0.12+)

● Allow using lists and maps with conditionals #12453 (Conditionals → 0.12)
● Support the count parameter for modules #953 (Breaking change,freezed)
● Support for nested maps in variables #2114 (Complex types → 0.12)
● Data sources should allow empty results without failing #16380
● allow `-target` to accept globs #2182 (Thumb up!)
● Storing sensitive values in state files #516 (Vault integration ? Thumbs up !)

Helper Tools around:
● Reformat the output of terraform plan to be easier to read

and understand.
https://github.com/coinbase/terraform-landscape

● Export existing AWS resources to Terraform style (tf,
tfstate)
https://github.com/dtan4/terraforming

● Terraform version manager
https://github.com/Zordrak/tfenv

● Generate documentation from Terraform modules
https://github.com/segmentio/terraform-docs

● Detect errors that can not be detected by terraform plan
https://github.com/wata727/tflint

https://github.com/coinbase/terraform-landscape
https://github.com/dtan4/terraforming
https://github.com/Zordrak/tfenv
https://github.com/segmentio/terraform-docs
https://github.com/wata727/tflint

Terraform: Interactive Graph visualizations

https://28mm.github.io/blast-radius-docs/

Blast Radius

https://github.com/28mm/blast-radius

Author : Patrick McMurchie
Licence : MIT

https://28mm.github.io/blast-radius-docs/
https://github.com/28mm/blast-radius

Terraform wrappers

Terragrunt

https://github.com/gruntwork-io/terragrunt

● Makefiles

● Bash wrappers

● Python wrappers

● ???

Test your code

Terratest

https://github.com/gruntwork-io/terratest

https://github.com/newcontext-oss/kitchen-terraform

Kitchen
Terraform

terraform-compliance

https://github.com/eerkunt/terraform-compliance

Automation and Safety!

Atlantis
https://www.runatlantis.io/

https://github.com/runatlantis/atlantis

● Empower your Developers
collaborate on IaaC
and be the part of DevOps

● Avoid mistakes
● Audit Logs
● Compliance
● Doesn’t break you workflow
● Golang and webhooks under the

hood

https://www.runatlantis.io/

Source of Knowledge

https://github.com/shuaibiyy/awesome-terraform

https://www.hashicorp.com/blog
https://www.terraform.io/docs/index.html

https://github.com/hashicorp/terraform

Yevgeniy Brikman
https://blog.gruntwork.io

https://www.hashicorp.com/blog
https://www.terraform.io/docs/index.html

Source of Knowledge

https://linuxacademy.com

● Managing Applications and Infrastructure with Terraform

● Deploying to AWS with Ansible and Terraform

Happy Terraforming!
Thank you!

Turbinskii Viktor

twitter: @devopsv
github: @Victorion
email : sys.viktor@gmail.com

Texuna

