
edgexfoundry.org | @edgexfoundry

Getting Lean and

Distributed at the Edge

Jim White

Dell Technologies

October 2018

edgexfoundry.org | @edgexfoundry

Agenda

• 2 minute quick intro to EdgeX Foundry

• EdgeX architecture

• Requirements of an edge platform

• EdgeX performance metrics
• In the beginning

• Today

• Keys to the diet

• Distributing EdgeX micro services
• Why distribution matters

edgexfoundry.org | @edgexfoundry

About Me

• Jim White (james_white2@dell.com)
• Dell Technologies IoT Solutions Division – Distinguished Engineer

• Team Lead of the IoT Platform Development Team

• Chief architect and lead developer of Project Fuse

• Dell’s original IoT platform project that became EdgeX Foundry

• Yes – I wrote the first line(s) of code for EdgeX (apologies in advance)

• EdgeX Foundry …

• Vice Chairman, Technical Steering Committee

• Systems Management Working Group Chair

• Ad hoc and unofficial lead architect

edgexfoundry.org | @edgexfoundry

EdgeX Foundry

2.0

edgexfoundry.org | @edgexfoundry

Backed by Industry Leaders

With more in process!

edgexfoundry.org | @edgexfoundry

EdgeX Foundry Goals

• Common open platform unifying edge computing

• Create an ecosystem of interoperable plug-and-play components

• Certify to ensure interoperability and compatibility

• Provide tools to create IoT edge solutions

• Collaborate across the IoT

It’s 102◦c

Cloud, Enterprise,
On-Prem…

Stop the machine

Local Analytics

edgexfoundry.org | @edgexfoundry

EdgeX Architectural Tenets

• Platform agnostic

• Extremely flexible

• Encourages best of breed solutions

• Store and forward

• Facilitate “intelligence” moving closer to the edge

• Support brown and green devices/sensors

• Must be secure and easily managed

edgexfoundry.org | @edgexfoundry

EdgeX Enables Tiered Fog Deployments

Fog Server

Cloud

Gateway

Gateway

Device
Service

Export
Services

Cloud

Device
Service

Device
Service

Core
Services

Export
Services

Analytics

Core
Services

Export
Services

Analytics

Device
Service

Core
Services Analytics

Cloud

Embedded
Device Services

Fog Server

Core
Services

Export
Services

Analytics

Cloud

edgexfoundry.org | @edgexfoundry

EdgeX Technology

edgexfoundry.org | @edgexfoundry

Key Project Links

https://github.com/edgexfoundry

https://docs.edgexfoundry.org/

https://wiki.edgexfoundry.org/display/FA/EdgeX+Tech+Talks

https://www.edgexfoundry.org/news/blog/

https://lists.edgexfoundry.org/mailman/listinfo

https://chat.edgexfoundry.org/home

https://www.edgexfoundry.org/about/members/join/

https://www.linkedin.com/company/edgexfoundry/

https://twitter.com/EdgeXFoundry

https://www.youtube.com/edgexfoundry

https://github.com/edgexfoundry
https://docs.edgexfoundry.org/
https://wiki.edgexfoundry.org/display/FA/EdgeX+Tech+Talks
https://www.edgexfoundry.org/news/blog/
https://lists.edgexfoundry.org/mailman/listinfo
https://chat.edgexfoundry.org/home
https://www.edgexfoundry.org/about/members/join/
https://www.linkedin.com/company/edgexfoundry/
https://twitter.com/EdgeXFoundry
https://www.youtube.com/edgexfoundry

edgexfoundry.org | @edgexfoundry

Requirements of an Edge Platform

• Near real-time

• Sensor sampling rates of 100-1000/second

• Handling kilobytes per message

• Latency < 1 second from sensor to analytics to actuation

edgexfoundry.org | @edgexfoundry

Typical Collection or Sampling Rates

Use Case Sampling Rate Order of Volume

Electric Grid Line Fault Detection Micro second Bytes, KBs

Vibration Sensor Micro second to seconds Bytes, KBs

Pressure Sensor Micro second to seconds Bytes, KBs

PLC Micro second to seconds Bytes, KBs

CNC Machines Micro second to seconds KBs, MBs

CANBus Micro second to seconds MB

Building Automation Micro second to seconds Bytes, KBs

Locomotive Telemetry Micro second to seconds KBs, MBs

RTU in Utility Micro second to seconds KBs, MBs

Oil/Gas Micro second to seconds KBs

RFID Micro second to seconds Bytes, KBs

edgexfoundry.org | @edgexfoundry

EdgeX in the beginning - April 2017

• EdgeX started as a Dell POC in 2015

• 7-5 GB RAM

• ~50% CPU utilization (2CPU, 8GB gateway)
• Pegged at 100% at startup

• Startup > 30 seconds/service
• System startup ~5 minutes

edgexfoundry.org | @edgexfoundry

EdgeX @ the start (Hannover Messe 2017)
Service Container size (in MB) RAM (in MB)

Metadata 165 301

Coredata 170 299

Command 159 244

Logging 158 249

Scheduler 161 215

Notifications 153 222

Export Client 164 240

Export Distro 168 291

Rules Engine 177 270

SNMP DS 169 265

Fishertech DS 169 281

Bacnet DS 437 278

BLE DS 168 301

UI 607 50

Mongo 402 99

CPU % - 34%
Mem: 5.1 of 7.7G used
Swap: 168M of 7.9G used

edgexfoundry.org | @edgexfoundry

Performance Targets set Oct 2017

• 2nd EdgeX Technical Steering Committee Face to Face Decision

• Run in < 1GB RAM

• Use < 25% CPU

• Use < 32GB Storage

• Startup < 10 seconds

• Latency < 1 second (ingestion to actuation)

edgexfoundry.org | @edgexfoundry

Early Go v. Java Experiment (October 2017)

Measure Go Java

Executable/JAR Footprint 11.7 MB 42.4 MB

Container Footprint 16.2 MB 165 MB

Memory Usage (On Startup) 4.3 MB 221 MB

Memory Usage (Under Load) 9.2 MB 230 MB

CPU Usage (Steady State) 0.15% 0.30%

CPU Usage (Under Load) 5.0% - 15.0% 6.0% - 15.0% (spiked at 90% for heavy load)

Startup Speed 0.14 Seconds 12.55 Seconds

Response Speed (Ping) 0.0011 Seconds 0.0022 Seconds

Response Speed (Post) 0.0091 Seconds 0.0137 Seconds

Response Speed (Get) 0.0038 Seconds 0.0062 Seconds

edgexfoundry.org | @edgexfoundry

EdgeX Today (Oct 2018 – Delhi release)

Service Go Max CPU Java Max CPU Go Max Mem Java Max Mem Go Container Size Java Container Size
Core Data 0.16% 13.71% 29.54 270 15.9 142

Core Metadata 1.02% 4.09% 8.70 275 10.5 125

Core Command 0.008% 1.10% 1.55 204 8.67 131

Support Logging 0.32% 7.31% 7.58 210 9.27 116

Support Notifications 0.09% 0.71% 4.53 217 9.65 125

Export Client 0.02% 7.66% 4.12 221 15.9 136

Export Distro 0.06% 9.99% 3.84 251 16.2 140

Mongo 0.93% 0.55% 72.30 76 361 361

Consul 1.71% 0.43% 17.12 12 59.1 168

Docker Files/Volume 0.01% 0.01% 0.20 0 81.2 122

Total 4% 46% 149 1736 587 1566

%CPU %CPU MB MB MB MB

edgexfoundry.org | @edgexfoundry

EdgeX Delhi Release

• > 90% memory reduction

• > 90% CPU reduction

• > 80% footprint reduction

• > 95% startup time reduction
• Startup ~ 5 seconds

edgexfoundry.org | @edgexfoundry

Keys to the diet success

• Go vs. Java
• Executable vs virtual machine

• Frameworks are heavy (Spring, EAI engine, etc.)

• Library bloat (frameworks and Java use a lot of libraries)

• Micro service architecture
• Replace one service at a time

• Allowed for exploration and discovery (best practices, tools, etc.)

• Iteration
• Crawl-walk-run

• Get a replacement service, make it better, standardize across services

edgexfoundry.org | @edgexfoundry

Distribution – the other tool in lean & mean

21

Fog Server

Cloud

Gateway

Gateway

Device
Service

Export
Services

Cloud

Device
Service

Device
Service

Core
Services

Export
Services

Analytics

Core
Services

Export
Services

Analytics

Device
Service

Core
Services Analytics

Cloud

Embedded
Device Services

Fog Server

Core
Services

Export
Services

Analytics

Cloud

edgexfoundry.org | @edgexfoundry

Distribution – Run where you can

Device
Service

Core
Services

Export
Services

Analytics

edgexfoundry.org | @edgexfoundry

Question??

Thank you

Jim White: james_white2@dell.com

edgexfoundry.org | @edgexfoundry

Agenda

• 2 minute quick intro to EdgeX Foundry

• EdgeX architecture

• Requirements of an edge platform

• EdgeX performance metrics
• In the beginning

• Today

• Keys to the diet

• Distributing EdgeX micro services
• Why distribution matters

edgexfoundry.org | @edgexfoundry

About Me

• Jim White (james_white2@dell.com)
• Dell Technologies IoT Solutions Division – Distinguished Engineer

• Team Lead of the IoT Platform Development Team

• Chief architect and lead developer of Project Fuse

• Dell’s original IoT platform project that became EdgeX Foundry

• Yes – I wrote the first line(s) of code for EdgeX (apologies in advance)

• EdgeX Foundry …

• Vice Chairman, Technical Steering Committee

• Systems Management Working Group Chair

• Ad hoc and unofficial lead architect

edgexfoundry.org | @edgexfoundry

EdgeX Foundry

An open source, vendor neutral project (and ecosystem)

A micro service, loosely coupled software framework for IoT edge computing

Hardware and OS agnostic

A Dell incubated project started in 2015; entered into open source in April 2017

Linux Foundation, Apache 2 project

Goal: enable and encourage growth in IoT solutions
• The community builds and maintains common building blocks and APIs
• Plenty of room for adding value and getting a return on investment
• Allowing best-of-breed solutions

edgexfoundry.org | @edgexfoundry

Backed by Industry Leaders

With more in process!

edgexfoundry.org | @edgexfoundry

EdgeX Foundry Goals

• Build and promote EdgeX as the common open platform unifying edge computing

• Enable and encourage the rapidly growing community of IoT solutions providers to create an
ecosystem of interoperable plug-and-play components

• Certify EdgeX components to ensure interoperability and compatibility

• Provide tools to quickly create EdgeX-based IoT edge solutions

• Collaborate with relevant open source projects, standards groups, and industry alliances to
ensure consistency and interoperability across the IoT

edgexfoundry.org | @edgexfoundry

EdgeX Primer - How it works

• A collection of a dozen+ micro services

• Written in multiple languages (Java, Go, C, … we are polyglot believers!!)

• EdgeX data flow:

• Sensor data is collected by a Device Service from a thing

• Data is passed to the Core Services for local persistence

• Data is then passed to Export Services for transformation, formatting, filtering and can then be sent
“north” to enterprise/cloud systems

• Data is then available for edge analysis and can trigger device actuation through Command service

• Many others services provide the supporting capability that drives this flow

• REST communications between the service

• Some services exchange data via message bus (core data to export services and rules engine)

• Micro services are deployed via Docker and Docker Compose

It’s 102◦c

Cloud, Enterprise,
On-Prem…

Stop the machine

Local Analytics

edgexfoundry.org | @edgexfoundry

EdgeX Architectural Tenets

• EdgeX Foundry must be platform agnostic with regard to hardware, OS, distribution/deployment, protocols/sensors

• EdgeX Foundry must be extremely flexible

• Any part of the platform may be upgraded, replaced or augmented by other micro services or software components

• Allow services to scale up and down based on device capability and use case

• EdgeX Foundry should provide “reference implementation” services but encourages best of breed solutions

• EdgeX Foundry must provide for store and forward capability (to support disconnected/remote edge systems)

• EdgeX Foundry must support and facilitate “intelligence” moving closer to the edge in order to address

• Actuation latency concerns

• Bandwidth and storage concerns

• Operating remotely concerns

• EdgeX Foundry must support brown and green device/sensor field deployments

• EdgeX Foundry must be secure and easily managed

edgexfoundry.org | @edgexfoundry

EdgeX Enables Tiered Fog Deployments

• In today’s IoT landscape, it is imperative to
leverage compute, storage, network
resources where every they live

• Loosely-coupled architecture enables
distribution across nodes to enable tiered
edge/fog computing

• Scope includes embedded sensors to
controllers, edge gateways and servers

• Quantity and function of micro services
deployed on a given node depends on the
use case and capability of hardware

Fog Server

Cloud

Gateway

Gateway

Device
Service

Export
Services

Cloud

Device
Service

Device
Service

Core
Services

Export
Services

Analytics

Core
Services

Export
Services

Analytics

Device
Service

Core
Services Analytics

Cloud

Embedded
Device Services

Fog Server

Core
Services

Export
Services

Analytics

Cloud

edgexfoundry.org | @edgexfoundry

EdgeX Technology

• A majority of the micro services are written in Go Lang

• Previously written in Java

• Some Device Services written in C/C++

• A user interface is provided in JavaScript

• Polyglot belief – use the language and tools that make sense for each service

• Each service has a REST API for communicating with it

• Uses MongoDB to persist sensor data at the edge

• Also stores application relevant information

• Allows for alternate persistence storage (and has been done in the past)

• A message pipe connects Core Data to Export Services and/or Rules Engine

• Uses ZeroMQ by default

• Allow use of MQTT as alternate if broker is provided

• Uses open source technology where appropriate

• Ex: Consul for configuration/registry, Kong for reverse proxy, Drools for rules engine,…

edgexfoundry.org | @edgexfoundry

Key Project Links

Access the code:

https://github.com/edgexfoundry

Access the technical documentation:

https://docs.edgexfoundry.org/

Access technical video tutorials:

https://wiki.edgexfoundry.org/display/FA/EdgeX
+Tech+Talks

EdgeX Blog:

https://www.edgexfoundry.org/news/blog/

Join an email distribution:

https://lists.edgexfoundry.org/mailman/listinfo

Join the Rocket Chat:

https://chat.edgexfoundry.org/home

Become a project member:

https://www.edgexfoundry.org/about/members/join/

LinkedIn:

https://www.linkedin.com/company/edgexfoundry/

Twitter:

https://twitter.com/EdgeXFoundry

YouTube:

https://www.youtube.com/edgexfoundry

https://github.com/edgexfoundry
https://docs.edgexfoundry.org/
https://wiki.edgexfoundry.org/display/FA/EdgeX+Tech+Talks
https://www.edgexfoundry.org/news/blog/
https://lists.edgexfoundry.org/mailman/listinfo
https://chat.edgexfoundry.org/home
https://www.edgexfoundry.org/about/members/join/
https://www.linkedin.com/company/edgexfoundry/
https://twitter.com/EdgeXFoundry
https://www.youtube.com/edgexfoundry

edgexfoundry.org | @edgexfoundry

Requirements of an Edge Platform

• Not all platforms are equal
• Real time vs near real time

• Collection rates
• Typically dealing with sensor sampling rates of 100-1000/second

• Throughput
• Typically handling kilobytes per message

• Surveillance systems much greater

• Latency
• To the cloud (or application layer)

• Back to the device

• < 1 second from sensor to analytics to actuation

edgexfoundry.org | @edgexfoundry

Typical Collection or Sampling Rates

Use Case Sampling Rate Order of Volume

Electric Grid Line Fault Detection Micro second Bytes, KBs

Vibration Sensor Micro second to seconds Bytes, KBs

Pressure Sensor Micro second to seconds Bytes, KBs

PLC Micro second to seconds Bytes, KBs

CNC Machines Micro second to seconds KBs, MBs

CANBus Micro second to seconds MB

Building Automation Micro second to seconds Bytes, KBs

Locomotive Telemetry Micro second to seconds KBs, MBs

RTU in Utility Micro second to seconds KBs, MBs

Oil/Gas Micro second to seconds KBs

RFID Micro second to seconds Bytes, KBs

edgexfoundry.org | @edgexfoundry

EdgeX in the beginning - April 2017

• EdgeX started as a Dell POC in 2015
• We needed a platform independent language/framework
• Enter Java/Spring Framework
• It proved the concepts but wasn’t edge worthy

• Initial Performance was poor and not able to meet requirements
• Running all the micro services required 7+ GB RAM
• Improved to 5.1GB RAM with some tuning
• CPU utilization around ~50% on a 2CPU, 8GB gateway
• At startup, CPU pegged at 100%
• Startup time for each service > 30 seconds
• System startup ~5 minutes (due to service dependencies)

edgexfoundry.org | @edgexfoundry

EdgeX @ the start (Hannover Messe 2017)
Service Container size (in MB) RAM (in MB)

Metadata 165 301

Coredata 170 299

Command 159 244

Logging 158 249

Scheduler 161 215

Notifications 153 222

Export Client 164 240

Export Distro 168 291

Rules Engine 177 270

SNMP DS 169 265

Fishertech DS 169 281

Bacnet DS 437 278

BLE DS 168 301

UI 607 50

Mongo 402 99

CPU % - 34%
Mem: 5.1 of 7.7G used
Swap: 168M of 7.9G used

edgexfoundry.org | @edgexfoundry

Setting new Performance Targets in Oct 2017

• Clearly, EdgeX was not going to cut it as an edge solution

• 2nd EdgeX Technical Steering Committee Face to Face Decision
• Move to an executable language (Go Lang) – based on early experimental testing

• Set reasonable edge performance targets

• The target is to run all of EdgeX on a Raspberry Pi 3 type of device
• 1 GB RAM, 64bit CPU, at least 32GB storage space

• Additional performance targets

• Startup in 10 seconds or less (post OS boot)

• Latency for one piece of data from data ingestion to actuation will be < 1 second

• Remaining OS and Hardware agnostic
• Windows, Linux, *nix, …

• Intel/Arm 64/Arm 32

edgexfoundry.org | @edgexfoundry

Early Go v. Java Experiment (October 2017)

Measure Go Java

Executable/JAR Footprint 11.7 MB 42.4 MB

Container Footprint 16.2 MB 165 MB

Memory Usage (On Startup) 4.3 MB 221 MB

Memory Usage (Under Load) 9.2 MB 230 MB

CPU Usage (Steady State) 0.15% 0.30%

CPU Usage (Under Load) 5.0% - 15.0% 6.0% - 15.0% (spiked at 90% for heavy load)

Startup Speed 0.14 Seconds 12.55 Seconds

Response Speed (Ping) 0.0011 Seconds 0.0022 Seconds

Response Speed (Post) 0.0091 Seconds 0.0137 Seconds

Response Speed (Get) 0.0038 Seconds 0.0062 Seconds

edgexfoundry.org | @edgexfoundry

EdgeX Today (Oct 2018 – Delhi release)

• Can run on a Rasp Pi 3 level of device
• < 1GB RAM

• > 90% memory reduction

• > 90% CPU reduction

• > 80% footprint reduction

• > 95% startup time reduction
• Startup ~ 5 seconds

Service Go Max CPU Java Max CPU Go Max Mem Java Max Mem Go Container Size Java Container Size
Core Data 0.16% 13.71% 29.54 270 15.9 142

Core Metadata 1.02% 4.09% 8.70 275 10.5 125

Core Command 0.008% 1.10% 1.55 204 8.67 131

Support Logging 0.32% 7.31% 7.58 210 9.27 116

Support Notifications 0.09% 0.71% 4.53 217 9.65 125

Export Client 0.02% 7.66% 4.12 221 15.9 136

Export Distro 0.06% 9.99% 3.84 251 16.2 140

Mongo 0.93% 0.55% 72.30 76 361 361

Consul 1.71% 0.43% 17.12 12 59.1 168

Docker Files/Volume 0.01% 0.01% 0.20 0 81.2 122

Total 4% 46% 149 1736 587 1566

%CPU %CPU MB MB MB MB

edgexfoundry.org | @edgexfoundry

Keys to the diet success

• Go vs. Java
• Executable vs virtual machine

• Frameworks are heavy (Spring, EAI engine, etc.)

• Library bloat (frameworks and Java use a lot of libraries)

• Micro service architecture
• Replace one service at a time

• Allowed for exploration and discovery (best practices, tools, etc.)

• Iteration
• Crawl-walk-run

• Get a replacement service, make it better, standardize across services

edgexfoundry.org | @edgexfoundry

Distribution – the other tool in lean & mean

• EdgeX is a collection of independent and loosely couple micro services
• Allows for distribution across the available compute resources

• In today’s IoT landscape, it is imperative to leverage compute, storage,
network resources where every they live

• Loosely-coupled architecture enables distribution across nodes to enable
tiered edge/fog computing

• Scope includes embedded sensors to controllers, edge gateways and
servers

• Quantity and function of micro services deployed on a given node
depends on the use case and capability of hardware

edgexfoundry.org | @edgexfoundry

Distribution – Run where you can

Device
Service

Core
Services

Export
Services

Analytics

edgexfoundry.org | @edgexfoundry

Question??

Thank you

Jim White: james_white2@dell.com

