
From One Architecture to Many: Porting
OpenMandriva to AArch64, armv7hnl,

RISC-V and Ryzen

OSS/ELC 2018
Bernhard “Bero” Rosenkränzer

Who are we?
● One of the older Linux distributions still alive - started in 1998 as Mandrake,

renamed to Mandriva after merging with Conectiva, renamed and reorganized
as OpenMandriva when Mandriva (the company) went out of business, but
“Mandriva” (the OS community) remained active

● Always primarily (though not exclusively) a desktop OS -- which up until
recently meant x86.

● The upcoming version 4.0 will be released for x86, aarch64, armv7hnl and
Ryzen (special variant of x86), and a RISC-V port is underway.

Our mascot Chwido -- insisting to participate even
though he couldn’t make the travel

Why do this now?
● Other CPU architectures are starting to be fast enough to replace a traditional

desktop and laptop
● Monopolies are harmful

Will this be yet another port that will be discontinued?

No: because this time we’re doing it right…

Mistakes made in previous ports that we’re not going to repeat (and neither should
you…):

● Ports done by a company without community participation
● Porting an old release instead of porting the current development branch
● Separate toolchains for every architecture, separate crosscompilers

essentially inviting architectures that get less attention to fall behind

Setting up a port the right way
● Get the toolchains including crosscompilers right

○ More on that a bit later

● Build core packages needed to compile others.
○ No shortcuts there… Still some work involved there, will come back to that

● When the core packages are ready, add it to the build system (I don’t
presume anyone still uploads locally built binary packages directly…) - but
allow packages to fail for the time being (it’ll take some time before all libraries
are ready…)

● Try to build all packages
● Stop allowing packages that don’t build on all

architectures, build install images

Setting up a port correctly

Toolchains
We don’t want to end up in a situation where different architectures have to use
different compiler versions, or (even worse) where crosscompilers are out of sync
with native compilers…

So we modified our toolchain related packages to generate the native compiler as
well as crosscompilers to all other supported architectures from the same source,
at the same time.

binutils.spec -- an example
%global targets aarch64-linux armv7hnl-linux i686-linux x86_64-linux x32-linux riscv32-linux
riscv64-linux aarch64-linuxmusl armv7hnl-linuxmusl i686-linuxmusl x86_64-linuxmusl x32-linuxmusl
riscv32-linuxmusl riscv64-linuxmusl aarch64-android armv7l-android armv8l-android i686-mingw32
x86_64-mingw32

%global long_targets %(
for i in %{targets}; do

CPU=$(echo $i |cut -d- -f1)
OS=$(echo $i |cut -d- -f2)
echo -n "$(rpm --target= ${CPU}-${OS} -E %%{_target_platform}) "

done
)

[… usual rpm boilerplate …]

binutils.spec -- an example
%build
for i in %{long_targets}; do

mkdir -p BUILD-$i
cd BUILD-$i
if ["%{_target_platform} " = "$i"]; then

Native build -- we want shared libs here…
EXTRA_CONFIG="--enable-shared --with-pic "

else
Cross build -- need to set program_prefix and friends…
EXTRA_CONFIG="--target=$i --program-prefix= $i- --disable-shared --enable-static

--with-sysroot= %{_prefix}/${i} --with-native-system -header-dir=/include"
fi
[...]
%configure $EXTRA_CONFIG
%make

done
[...]

binutils.spec -- an example
%(
for i in %{long_targets}; do

["$i" = "%{_target_platform }"] && continue
cat <<EOF

%package -n cross-${i}-binutils
Summary: Binutils for crosscompiling to ${i}
Group: Development/Other

%description -n cross-${i}-binutils
Binutils for crosscompiling to ${i}.

%files -n cross-${i}-binutils
%{_prefix}/${i}
%{_bindir}/${i}-*
EOF
done
)

Some tweaks for making rpm cross compiler friendly
Wouldn’t it be nice if we could just “rpm -ba --target newarch whatever.spec” on
any box (regardless of CPU) to get a whatever.newarch.rpm?

Not 100% there yet, but getting close with a few helper macros.

Detecting that we’re crosscompiling is a good first step:

%cross_compiling %(rm -f /tmp/rpm_cc_test 2>/dev/null; echo 'int main() { return 0; }' | %{__cc}
%{optflags} -x c - -o /tmp/rpm_cc_test &>/dev/null; if /tmp/rpm_cc_test 2>/dev/null; then echo -n
0; else echo -n 1; fi; rm -f /tmp/rpm_cc_test 2>/dev/null)

Cross-compiling: autoconf
Knowing whether or not we’re crosscompiling, we can adjust %configure, %cmake
and similar macros to do the right thing

%configure \
[...]
%if %{cross_compiling} \
PKG_CONFIG_PATH=/usr/%{_target_platform}/sys-root%{_libdir}/pkgconfig:/usr/%{_target_platfo
rm}/sys-root%{_datadir}/pkgconfig:%{_libdir}/pkgconfig:%{_datadir}/pkgconfig:$PKG_CONFIG_PA
TH; export PKG_CONFIG_PATH; \
CROSSCOMPILE="%{?!noconftarget:--target=%{_target_platform}}
%{?!noconfhost:--host=%{_target_platform}} %{?!noconfbuild:--build=%{_build}}" ; \

%endif \
./configure $CROSSCOMPILE [...]

Cross-compiling: cmake
Similar modification for packages that use cmake: Insert
CROSSCOMPILE="-DCMAKE_TOOLCHAIN_FILE=\"%_prefix/%_target_platform/share/cmake/%_target_platform.t
oolchain\" -DCMAKE_CROSSCOMPILING:BOOL=ON" ;

We generate the cmake toolchain file as part of the rpm package:

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_VERSION 1)
set(CMAKE_SYSTEM_PROCESSOR $ARCH)
set(CMAKE_C_COMPILER "$USR/bin/clang -target $TARGET")
or set(CMAKE_C_COMPILER "$USR/bin/$TARGET-gcc")
set(CMAKE_CXX_COMPILER "$USR/bin/clang++ -target $TARGET")
or set(CMAKE_CXX_COMPILER "$USR/bin/$TARGET-g++")
set(CMAKE_FIND_ROOT_PATH "$SYSROOT")
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

Working around lack of hardware...
Unfortunately, not every package can be crosscompiled cleanly -- some packages
build codegenerators and other build tools for the target system and insist on
being able to run them.
This can be a problem when boards for new target hardware aren’t available yet…

Fortunately qemu 3.x is usually good enough. Qemu built in the -static config,
combined with some binfmt_misc setup allows you to essentially chroot into a fake
board.

qemu chroots
Qemu chroots can be speeded up by using native binaries for build tools that
produce the same result regardless of where they’re run (coreutils, make, …)

When e.g. crosscompiling from aarch64 to riscv64, you can use a riscv64 gcc
(producing the right output) combined with aarch64 coreutils, make, etc.

Since clang includes crosscompilers in the same binary without having to change
anything, using aarch64 clang is usually safe as well (and much faster than
involving the emulator)

Installation
Last big problem: installation -- many non-x86 devices don’t boot from USB or
even CD/DVD through UEFI or syslinux…

Unfortunately there is no universal solution yet (but we’re working on it…) - many
interesting devices have Android support though, so can we pretend being
Android?

Android’s mkbootimg tool (in the AOSP source tree) can generate a fastboot
compatible Android-ish boot.img -- even if you feed it with a non-Android kernel
and initrd.

Pretending to be Android -- boot.img
Android’s mkbootimg tool (in the AOSP source tree) can generate a fastboot
compatible Android-ish boot.img -- even if you feed it with a non-Android kernel
and initrd.

mkbootimg --kernel ${KERNELDIR}/arch/arm64/boot/Image \
 --ramdisk ${ROOTFS}/boot/initrd-${KERNEL}.img \
 --output boot.img \
 --dt dt.img \
 --pagesize 4096 \
 --base 0x80000000 \
 --cmdline "root=/dev/disk/by-partlabel/system rw rootwait console=ttyMSM0,115200n8
systemd.unit=graphical.target "

Pretending to be Android -- system.img
An Android system.img is essentially an ext4 filesystem image containing the root
filesystem - but it uses a special compressed format.

It can be generated with make_ext4fs (from the AOSP source) - but will lose
permissions, ownership etc. to set them up in an Android-ish way…

… unless, of course, it is patched to do the right thing.
https://github.com/OpenMandrivaAssociation/android-tools/blob/master/make_ext
4fs-add-keep-uids-option.patch

https://github.com/OpenMandrivaAssociation/android-tools/blob/master/make_ext4fs-add-keep-uids-option.patch
https://github.com/OpenMandrivaAssociation/android-tools/blob/master/make_ext4fs-add-keep-uids-option.patch

Pretending to be Android -- system.img
make_ext4fs -s -l 10G -K Android/system.img ${ROOTFS}

The boot.img and system.img files can now be installed using “fastboot flash boot
boot.img” and “fastboot flash system system.img” -- on a device with an
Android-ish partition layout that can’t be changed, it’s usually a good idea to mount
the userdata partition (can be created with make_ext4fs as well) as /home.

Questions? Comments? Feedback? Dog food for Chwido?

bero@lindev.ch

http://openmandriva.org/

mailto:bero@lindev.ch
http://openmandriva.org/

