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A few words about tracing and LTTng

The (long) road to session rotation mode

How session rotation mode makes distributed trace analyses 
possible (and how to implement them)
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Isn’t tracing just another name for logging?Isn’t tracing just another name for logging?

Tracers are not completely unlike loggers

Both save information used to understand the state of an application
– Trying to cater to developers, admins, and end-users

In both cases, a careful balance must be achieved between 
verbosity, performance impact, and usefulness
– Logging levels
– Enabling only certain events
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Different goals, different tradeoffsDifferent goals, different tradeoffs

Tracers tend to focus on low-level events
– Capture syscalls, scheduling, filesystem events, etc.
– More events to capture means we must lower the space and run-time 

cost per event
– Binary format
– Different tracers use different strategies to minimize cost
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Different goals, different tradeoffsDifferent goals, different tradeoffs

Traces are harder to work with than text log files
– File size

● Idle 4-core laptop:    54k events/sec @ 2.2 MB/sec
● Busy 8-core server:  2.7M events/sec @ 95 MB/sec

– Exploration can be difficult
– Must know the application or kernel to make sense of what was 

captured
– Purpose-built tools are needed
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LTTng: Linux Trace Toolkit Next GenerationLTTng: Linux Trace Toolkit Next Generation

Open source tracing framework for Linux first released in 2005

Regroups a number of projects
– LTTng-UST // userspace tracer
– LTTng-modules // kernel tracer
– LTTng-tools // system daemons
– LTTng-analyses // analysis scripts
– LTTng Scope // graphical viewer



OSS Europe 2018 8

LTTng – What it does differentlyLTTng – What it does differently

Unify many information sources

– kernel, C/C++, python logging, java (jul and log4j)

Fast

– Kernel:        same as ftrace, with syscall payloads
– Userspace: ~130ns / event (32-bit payload, Xeon E5-2630)

Standard trace format (Common Trace Format)

– Vast ecosystem of analysis/post-processing tools
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Many ways to deploy LTTngMany ways to deploy LTTng

Allow multiple trace extraction methods
– Locally to disk

– Stream through the network to a trace server (lttng-relayd)
– Snapshot
– Live
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Local tracing and trace streamingLocal tracing and trace streaming

Great when working on an easily reproducible problem

Used by developers to gather very detailed logs

– Breakdown of where time is spent
– Understand how the kernel behaves under a certain load

These traces are then used with existing tools
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Local tracing and trace streamingLocal tracing and trace streaming

Not suited for continuous monitoring

Some users have used these modes to collect “samples”
– Choose a machine
– Trace for a moment
– Run scripts on the trace
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Snapshot modeSnapshot mode

Also known as “flight-recorder” mode
– Trace to in-memory buffers

Introduced to make it possible to leave tracing active on production 
machines
– Load a session profile on start-up
– Leave it running
– Capture the buffers when a condition occurs
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Snapshot modeSnapshot mode

A great improvement, but with some drawbacks

Must react quickly enough when an error occurs
– Not easy to do when the problem is detected on another machine

Capturing a short trace can make it hard to reason about what was 
happening
– Both for humans and existing tools
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Live modeLive mode

Introduced at the same time as the snapshot mode

CTF is not a format meant to be consumed while it is being produced
– Self-described layout requires careful synchronization between tracers and viewers
– Ensure that all data, from all domains, produced by all CPUs, is available up to a 

given point to merge traces

Makes it possible to consume correlated traces (multiple sources) from a 
TCP socket
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Live modeLive mode

Continuous monitoring was not the primary use-case

Meant to provide an experience closer to strace
– Time-correlated kernel and user-space traces
– Lower performance impact on traced applications

The protocol is not trivial to implement
– Only supported by babeltrace (text viewer)
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Live modeLive mode

Limitations making it hard to deploy for continuous monitoring
– Only one client may consume the trace at a time
– No way to consume traces in the past without stopping tracing
– Protocol is not designed to handle a high throughput
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Back to the drawing board!Back to the drawing board!

Gathered feedback from users
– There is no “typical” deployment, everyone uses different 

infrastructure components
– Trace processing is slow
– Traces are huge

Handle traces like we handle logs
– Just give us some plain old files and we’ll manage them
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Session rotationSession rotation

Build and provide 
independent trace “chunks”
– Can process those traces when 

and where we want
– Tracing can keep running, 

without disturbing the target
– Compatible with existing 

viewers

Chunk
├── [4.0K]  kernel
│   ├── [844K]  kchannel_0
│   ├── [5.2M]  kchannel_1
│   ├── [9.5M]  kchannel_2
│   ├── [1.0M]  kchannel_3
│   └── [308K]  metadata
└── [4.0K]  ust
    └── [4.0K]  uid
        └── [4.0K]  1000
            └── [4.0K]  64-bit
                ├── [ 16K]  metadata
                ├── [4.0K]  uchannel_0
                ├── [ 24K]  uchannel_1
                ├── [ 12K]  uchannel_2
                └── [4.0K]  uchannel_3
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Session rotationSession rotation

Listen for notifications that a trace archive is ready
– Run a script in-place on the target
– Keep a time/size-based backlog of traces
– Compress or encrypt traces
– rsync
– Notify workers over a MQ (Kafka, ZeroMQ, Rabbit MQ, etc.)
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Using session rotationUsing session rotation

Available from LTTng 2.11+
– Currently in release candidate, try it out!

Immediate rotation

$ lttng rotate --session my_session

Scheduled rotation

$ lttng enable-rotation --session my_session --timer 30s
$ lttng enable-rotation --session my_session --size 500M
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What are our users looking for?What are our users looking for?

Stateless analysis
– Count occurrences of events
– Breakdown errors by categories
– Statistical analysis of event payloads

babeltrace my_chunk | grep "MyApp::my_error" | wc -l
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What are our users looking for?What are our users looking for?

Stateful analysis
– Being able to query a model when a user space event is read

● Which file is ‘fd = 42’?
● What was my application doing when ENOSPC occurred?
● What was happening on the rest of the system

– Present data in a familiar way
[03:51:02.799664908] syscall_entry_read: { cpu_id = 1 }, { fd = 3, count = 64 }

[03:51:02.799664908] [thumbnailer] read(“assets/big_buck_bunny.avi”, count = 64);
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How current analysis tools workHow current analysis tools work

Track the state changes of resources
– Operate by feeding an internal model of the kernel
– Populate a state history database
– Rely on all information being available at all times

sched_switch
cpu_id = 3

next_tid = 1234

syscall_entry_open
filename = 

/etc/ld.so.cache

syscall_exit_open
tid = 1234
ret = 22

[...]
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How current analysis tools workHow current analysis tools work

Query the kernel model to augment user space traces
– Application reports an error reading “fd 42”

● Map the file descriptor to a file name

– A read() takes a long time to complete
● What was the I/O activity on that device during this time?

– A request took a long time to complete
● Was my task preempted during that time?
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ChallengesChallenges

Processing trace “chunks” independently
– Can’t rely on a complete model of the kernel being available
– We still have all the information, it’s just split into a lot of tiny traces

open(“my_file.dat”)open(“my_file.dat”) = 22

read(fd = 22, count = 10) = 10

close(fd = 22) = 0

CPU 0

CPU 1

CPU 2

CPU 3

Time
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ChallengesChallenges

This is where the current analyses need the most adjustments

Intuitively, analyses must happen in two phases
– Read the trace and identify spans

● Keep partial spans aside

– Merge results to stitch partial spans

This is starting to sound a lot like a MapReduce pipeline
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ChallengesChallenges

This is where the current analyses need the most adjustments

Intuitively, analyses must happen in two phases
– Read the trace and identify spans      // map()

● Keep partial spans aside

– Merge results to stitch partial spans          // reduce()

This is starting to sound a lot like a MapReduce pipeline
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ChallengesChallenges

In fact, it’s a bit more complicated than that
– Syscalls are not atomic operations; entry and exit may occur in different chunks

– Syscalls may fail

open(“my_file.dat”)open(“my_file.dat”)
[entry]

read(fd = 22, count = 10)
[entry]

close(fd = 22)
[entry]

CPU 0

CPU 1

CPU 2

CPU 3

Chunk 1

open() = 22
[exit]

read() = 10
[exit]

close() = 0
[exit]

Time
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ChallengesChallenges

Modelling object lifetime as nested spans makes intuitive sense
– A process lives for a period of time bounded by the kernel

● Threads live for a period of time bounded by their process / thread group
● A file descriptor lives for a period of time bounded by its process
● Let’s not get into clone() flags for now...

– Syscalls can be modelled the same way for entry and exit
● Nests within a Thread span

– The same applies to model the scheduler and track currently running tasks
● A CPU also has a lifetime (hotplug)

– It’s turtles all the way down
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ChallengesChallenges

Mapping
– Identify all spans in a trace

– Attempt to evaluate analysis queries against the modelThe creation of a file may not be 
visible, but we may see it being used

– We know fd 22 exists in that process (soft begin bound)

read(fd = 22, count = 15) = 15
[entry + exit]

Time

close(fd = 22 = 0
[entry + exit]

fd = 22, name = ?, type = ?
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ChallengesChallenges

Reducing amounts to stitching spans
– Soft bounds become hard bounds
– Attributes are resolved
– Queries for attributes that were unknown are re-evaluated

Time

fd = 22, name = ?, type = ?

fd = ?, name = “data.dat”,
type = block

fd = 22, name = “data.dat”,type = block
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ChallengesChallenges

In fact, it’s a bit more complicated than that, still...
– Rotations are not atomic across CPUs and domains

– ~28 ms to perform the switch across domains (12 threads)

Kernel

User space

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

Time
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ChallengesChallenges

Processing “raw” chunks adds more uncertainty to the model
– It becomes hard to reason about any span that can start and end on different CPUs

Kernel

User space

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

open() = fd dup2(..., fd) What does fd refer to?

Time
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ChallengesChallenges

There are a number of solutions to this problem
– The simplest is to use two chunks to “simulate” a clean bound

– Simple to perform since the traces all use the same clock source

Kernel

User space

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

Effective trace archive
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DemoDemo

● Started working on a trace analysis pipeline proof of concept to prepare this talk
– Goal is to provide the same kind of data as LTTng-analyses

● Breakdown of time spent in each processing phase of a user space 
application

● Show time spent in syscalls (with added information)

– Address shortcomings of LTTng-analyses
● Slow
● Not distributable (requires a complete trace)
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DemoDemo

A server application receives requests to generate a thumbnail from a video at a 
given time
– Open video file
– Seek in video file
– Decode video
– Encode thumbnail
– Send

Generate a breakdown of time spent in syscalls, per processing phase, and show 
it in a Grafana dashboard.
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ConclusionConclusion

The tracing infrastructure needed to easily distribute trace processing is now available in LTTng

Creating distributed analyses is challenging, but this POC shows that it is viable

Open questions

– What form should this POC take in the long term?
– How could it integrate with existing monitoring tools?
– How hard will it be to extend to multiple hosts?

● e.g. critical path analysis across hosts, determining network latency, etc.
● I assume the same model works, but does it really hold up?
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Questions ?Questions ?

  lttng.org

  lttng-dev@lists.lttng.org

  @lttng_projectlttng_project

 #lttng OFTClttng OFTC

mailto:lttng-dev@lists.lttng.org
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