
Fine-grained Distributed Application
Monitoring Using LTTng

jeremie.galarneau@efficios.com
jgalar

OSS Europe 2018OSS Europe 2018

OSS Europe 2018 2

PresenterPresenter

 Jérémie Galarneau

EfficiOS Inc.

– Vice President
– http://www.efficios.com

Maintainer of
– LTTng-tools
– Babeltrace

http://www.efficios.com/

OSS Europe 2018 3

OutlineOutline

A few words about tracing and LTTng

The (long) road to session rotation mode

How session rotation mode makes distributed trace analyses
possible (and how to implement them)

OSS Europe 2018 4

Isn’t tracing just another name for logging?Isn’t tracing just another name for logging?

Tracers are not completely unlike loggers

Both save information used to understand the state of an application
– Trying to cater to developers, admins, and end-users

In both cases, a careful balance must be achieved between
verbosity, performance impact, and usefulness
– Logging levels
– Enabling only certain events

OSS Europe 2018 5

Different goals, different tradeoffsDifferent goals, different tradeoffs

Tracers tend to focus on low-level events
– Capture syscalls, scheduling, filesystem events, etc.
– More events to capture means we must lower the space and run-time

cost per event
– Binary format
– Different tracers use different strategies to minimize cost

OSS Europe 2018 6

Different goals, different tradeoffsDifferent goals, different tradeoffs

Traces are harder to work with than text log files
– File size

● Idle 4-core laptop: 54k events/sec @ 2.2 MB/sec
● Busy 8-core server: 2.7M events/sec @ 95 MB/sec

– Exploration can be difficult
– Must know the application or kernel to make sense of what was

captured
– Purpose-built tools are needed

OSS Europe 2018 7

LTTng: Linux Trace Toolkit Next GenerationLTTng: Linux Trace Toolkit Next Generation

Open source tracing framework for Linux first released in 2005

Regroups a number of projects
– LTTng-UST // userspace tracer
– LTTng-modules // kernel tracer
– LTTng-tools // system daemons
– LTTng-analyses // analysis scripts
– LTTng Scope // graphical viewer

OSS Europe 2018 8

LTTng – What it does differentlyLTTng – What it does differently

Unify many information sources

– kernel, C/C++, python logging, java (jul and log4j)

Fast

– Kernel: same as ftrace, with syscall payloads
– Userspace: ~130ns / event (32-bit payload, Xeon E5-2630)

Standard trace format (Common Trace Format)

– Vast ecosystem of analysis/post-processing tools

OSS Europe 2018 9

Many ways to deploy LTTngMany ways to deploy LTTng

Allow multiple trace extraction methods
– Locally to disk

– Stream through the network to a trace server (lttng-relayd)
– Snapshot
– Live

OSS Europe 2018 10

Local tracing and trace streamingLocal tracing and trace streaming

Great when working on an easily reproducible problem

Used by developers to gather very detailed logs

– Breakdown of where time is spent
– Understand how the kernel behaves under a certain load

These traces are then used with existing tools

OSS Europe 2018 11

Local tracing and trace streamingLocal tracing and trace streaming

Not suited for continuous monitoring

Some users have used these modes to collect “samples”
– Choose a machine
– Trace for a moment
– Run scripts on the trace

OSS Europe 2018 12

Snapshot modeSnapshot mode

Also known as “flight-recorder” mode
– Trace to in-memory buffers

Introduced to make it possible to leave tracing active on production
machines
– Load a session profile on start-up
– Leave it running
– Capture the buffers when a condition occurs

OSS Europe 2018 13

Snapshot modeSnapshot mode

A great improvement, but with some drawbacks

Must react quickly enough when an error occurs
– Not easy to do when the problem is detected on another machine

Capturing a short trace can make it hard to reason about what was
happening
– Both for humans and existing tools

OSS Europe 2018 14

Live modeLive mode

Introduced at the same time as the snapshot mode

CTF is not a format meant to be consumed while it is being produced
– Self-described layout requires careful synchronization between tracers and viewers
– Ensure that all data, from all domains, produced by all CPUs, is available up to a

given point to merge traces

Makes it possible to consume correlated traces (multiple sources) from a
TCP socket

OSS Europe 2018 15

Live modeLive mode

Continuous monitoring was not the primary use-case

Meant to provide an experience closer to strace
– Time-correlated kernel and user-space traces
– Lower performance impact on traced applications

The protocol is not trivial to implement
– Only supported by babeltrace (text viewer)

OSS Europe 2018 16

Live modeLive mode

Limitations making it hard to deploy for continuous monitoring
– Only one client may consume the trace at a time
– No way to consume traces in the past without stopping tracing
– Protocol is not designed to handle a high throughput

OSS Europe 2018 17

Back to the drawing board!Back to the drawing board!

Gathered feedback from users
– There is no “typical” deployment, everyone uses different

infrastructure components
– Trace processing is slow
– Traces are huge

Handle traces like we handle logs
– Just give us some plain old files and we’ll manage them

OSS Europe 2018 18

Session rotationSession rotation

Build and provide
independent trace “chunks”
– Can process those traces when

and where we want
– Tracing can keep running,

without disturbing the target
– Compatible with existing

viewers

Chunk
├── [4.0K] kernel
│ ├── [844K] kchannel_0
│ ├── [5.2M] kchannel_1
│ ├── [9.5M] kchannel_2
│ ├── [1.0M] kchannel_3
│ └── [308K] metadata
└── [4.0K] ust
 └── [4.0K] uid
 └── [4.0K] 1000
 └── [4.0K] 64-bit
 ├── [16K] metadata
 ├── [4.0K] uchannel_0
 ├── [24K] uchannel_1
 ├── [12K] uchannel_2
 └── [4.0K] uchannel_3

OSS Europe 2018 19

Session rotationSession rotation

Listen for notifications that a trace archive is ready
– Run a script in-place on the target
– Keep a time/size-based backlog of traces
– Compress or encrypt traces
– rsync
– Notify workers over a MQ (Kafka, ZeroMQ, Rabbit MQ, etc.)

OSS Europe 2018 20

Using session rotationUsing session rotation

Available from LTTng 2.11+
– Currently in release candidate, try it out!

Immediate rotation

$ lttng rotate --session my_session

Scheduled rotation

$ lttng enable-rotation --session my_session --timer 30s
$ lttng enable-rotation --session my_session --size 500M

OSS Europe 2018 21

What are our users looking for?What are our users looking for?

Stateless analysis
– Count occurrences of events
– Breakdown errors by categories
– Statistical analysis of event payloads

babeltrace my_chunk | grep "MyApp::my_error" | wc -l

OSS Europe 2018 22

What are our users looking for?What are our users looking for?

Stateful analysis
– Being able to query a model when a user space event is read

● Which file is ‘fd = 42’?
● What was my application doing when ENOSPC occurred?
● What was happening on the rest of the system

– Present data in a familiar way
[03:51:02.799664908] syscall_entry_read: { cpu_id = 1 }, { fd = 3, count = 64 }

[03:51:02.799664908] [thumbnailer] read(“assets/big_buck_bunny.avi”, count = 64);

OSS Europe 2018 23

How current analysis tools workHow current analysis tools work

Track the state changes of resources
– Operate by feeding an internal model of the kernel
– Populate a state history database
– Rely on all information being available at all times

sched_switch
cpu_id = 3

next_tid = 1234

syscall_entry_open
filename =

/etc/ld.so.cache

syscall_exit_open
tid = 1234
ret = 22

[...]

OSS Europe 2018 24

How current analysis tools workHow current analysis tools work

Query the kernel model to augment user space traces
– Application reports an error reading “fd 42”

● Map the file descriptor to a file name

– A read() takes a long time to complete
● What was the I/O activity on that device during this time?

– A request took a long time to complete
● Was my task preempted during that time?

OSS Europe 2018 25

ChallengesChallenges

Processing trace “chunks” independently
– Can’t rely on a complete model of the kernel being available
– We still have all the information, it’s just split into a lot of tiny traces

open(“my_file.dat”)open(“my_file.dat”) = 22

read(fd = 22, count = 10) = 10

close(fd = 22) = 0

CPU 0

CPU 1

CPU 2

CPU 3

Time

OSS Europe 2018 26

ChallengesChallenges

This is where the current analyses need the most adjustments

Intuitively, analyses must happen in two phases
– Read the trace and identify spans

● Keep partial spans aside

– Merge results to stitch partial spans

This is starting to sound a lot like a MapReduce pipeline

OSS Europe 2018 27

ChallengesChallenges

This is where the current analyses need the most adjustments

Intuitively, analyses must happen in two phases
– Read the trace and identify spans // map()

● Keep partial spans aside

– Merge results to stitch partial spans // reduce()

This is starting to sound a lot like a MapReduce pipeline

OSS Europe 2018 28

ChallengesChallenges

In fact, it’s a bit more complicated than that
– Syscalls are not atomic operations; entry and exit may occur in different chunks

– Syscalls may fail

open(“my_file.dat”)open(“my_file.dat”)
[entry]

read(fd = 22, count = 10)
[entry]

close(fd = 22)
[entry]

CPU 0

CPU 1

CPU 2

CPU 3

Chunk 1

open() = 22
[exit]

read() = 10
[exit]

close() = 0
[exit]

Time

OSS Europe 2018 29

ChallengesChallenges

Modelling object lifetime as nested spans makes intuitive sense
– A process lives for a period of time bounded by the kernel

● Threads live for a period of time bounded by their process / thread group
● A file descriptor lives for a period of time bounded by its process
● Let’s not get into clone() flags for now...

– Syscalls can be modelled the same way for entry and exit
● Nests within a Thread span

– The same applies to model the scheduler and track currently running tasks
● A CPU also has a lifetime (hotplug)

– It’s turtles all the way down

OSS Europe 2018 30

ChallengesChallenges

Mapping
– Identify all spans in a trace

– Attempt to evaluate analysis queries against the modelThe creation of a file may not be
visible, but we may see it being used

– We know fd 22 exists in that process (soft begin bound)

read(fd = 22, count = 15) = 15
[entry + exit]

Time

close(fd = 22 = 0
[entry + exit]

fd = 22, name = ?, type = ?

OSS Europe 2018 31

ChallengesChallenges

Reducing amounts to stitching spans
– Soft bounds become hard bounds
– Attributes are resolved
– Queries for attributes that were unknown are re-evaluated

Time

fd = 22, name = ?, type = ?

fd = ?, name = “data.dat”,
type = block

fd = 22, name = “data.dat”,type = block

OSS Europe 2018 32

ChallengesChallenges

In fact, it’s a bit more complicated than that, still...
– Rotations are not atomic across CPUs and domains

– ~28 ms to perform the switch across domains (12 threads)

Kernel

User space

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

Time

OSS Europe 2018 33

ChallengesChallenges

Processing “raw” chunks adds more uncertainty to the model
– It becomes hard to reason about any span that can start and end on different CPUs

Kernel

User space

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

open() = fd dup2(..., fd) What does fd refer to?

Time

OSS Europe 2018 34

ChallengesChallenges

There are a number of solutions to this problem
– The simplest is to use two chunks to “simulate” a clean bound

– Simple to perform since the traces all use the same clock source

Kernel

User space

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

Effective trace archive

OSS Europe 2018 35

DemoDemo

● Started working on a trace analysis pipeline proof of concept to prepare this talk
– Goal is to provide the same kind of data as LTTng-analyses

● Breakdown of time spent in each processing phase of a user space
application

● Show time spent in syscalls (with added information)

– Address shortcomings of LTTng-analyses
● Slow
● Not distributable (requires a complete trace)

OSS Europe 2018 36

DemoDemo

A server application receives requests to generate a thumbnail from a video at a
given time
– Open video file
– Seek in video file
– Decode video
– Encode thumbnail
– Send

Generate a breakdown of time spent in syscalls, per processing phase, and show
it in a Grafana dashboard.

OSS Europe 2018 37

ConclusionConclusion

The tracing infrastructure needed to easily distribute trace processing is now available in LTTng

Creating distributed analyses is challenging, but this POC shows that it is viable

Open questions

– What form should this POC take in the long term?
– How could it integrate with existing monitoring tools?
– How hard will it be to extend to multiple hosts?

● e.g. critical path analysis across hosts, determining network latency, etc.
● I assume the same model works, but does it really hold up?

OSS Europe 2018 38

Questions ?Questions ?

 lttng.org

 lttng-dev@lists.lttng.org

 @lttng_projectlttng_project

 #lttng OFTClttng OFTC

mailto:lttng-dev@lists.lttng.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

