Establishing W
Image 0N M
Provenance ;
and Security
in Kubernetes

Adrian Mouat

‘EEE_ Container
~==" Solutions

info@container-solutions.com
www.container-solutions.com

Q3 open sourc st/

Photo by Eddié Howells

<
™
<
n
>
m
)
v

AR A SR I AR RS B RS

R

AT

@adrianmouat
Container Solutions

Know What The F™ Is Going On In Your Cluster

For every image in our cluster, we should be
able to answer:

What is it?

Where did it come from?

How can | rebuild it?

Does it have any known vulnerabilities?
S it up-to-date?

Can we prove the answers?

m What is it?
m Where did it come from?
m How can | rebuild it?

m Does it have any known vulnerabilities?
m |s it up-to-date?

“Docker will do to apt what
apt did to tar”

Bryan Cantrill
Joyent
@bcantrill

Kubectl Output

S kubectl get pods --all-namespaces

NAMESPACE NAME

default blog-7886fbf79b-mvndx
default db-75d77f7c88-tpkwr
default proxy-c65d78cbc-b51qg2

kube-system event-exporter-v0.2.1-5f5b89fcc8-65dxs
kube-system fluentd-gcp-scaler-7c5db745fc-rjfwf

S kubectl describe pod blog-7886fbf79b-mvndx

Contailners:
blog:
Container ID: docker://9e9b48b11fbBe53a8dcec5989d942. ..
Image: wordpress:4.9-php7.0-apache

Image ID: docker-pullable://wordpress@sha256:3d7b4. ..

DOCKER

1'1

Kubernetes views tags as immutable
Docker views tags as mutable

Both are useful.

@adrianmouat

Tagging Images

m [reat production images as
immutable
m Git Hash
m Full version number
m Digest

Environment Variables

S kubectl exec proxy-c65d78cbc-b51q2 env

NGINX_VERSION=1.15.5-1~stretch
NJS_VERSION=1.15.5.08.2.4-1~stretch

Environment Variables

m Limited

m Not structured/standardised

m Mixes config and metadata

m Labels were meant to fix this!
m (And annotations)

Labels

S cat Dockerfile

ARG VCS_REF
LABEL org.opencontainers.image.revision=SVCS_REF \
org.opencontalners.1image.source= \
"https://github.com/ContainerSolutions/trow"

S docker build -t amouat/trow \
--build-arg VCS_REF=S(git rev-parse --short HEAD) .

https://github.com/ContainerSolutions/trow

Labels

S docker inspect -f "{{json .ContainerConfig.Labels}}" \
amouat/trow | jq .
{

"org.opencontainers.image.revision”: "fef36bd",
"org.opencontainers.image.source"” :
"https://github.com/ContainerSolutions/trow"

}

Annotations

m Defined in OCl Image Spec
m Technically different to Labels
m “Pre-Defined Annotation Keys"

Pre-Defined Annotation Keys

This specification defines the following annotation keys, intended for but not limited to image index and image manifest
authors:

« org.opencontainers.image.created date and time on which the image was built (string, date-time as defined by RFC
3339).

« org.opencontainers.image.authors contact details of the people or organization responsible for the image (freeform
string)

« org.opencontainers.image.url URL to find more information on the image (string)
« org.opencontainers.image.documentation URL to get documentation on the image (string)
« org.opencontainers.image.source URL to get source code for building the image (string)

« org.opencontainers.image.version version of the packaged software
o The version MAY maich a label or tag in the source code repository

o version MAY be Semantic versioning-compatible
« org.opencontainers.image.revision Source control revision identifier for the packaged software.
« org.opencontainers.image.vendor Name of the distributing entity, organization or individual.

« org.opencontainers.image.licenses License(s) under which contained software is distributed as an SPDX License
Expression.

« org.opencontainers.image.ref.name Name of the reference for a target (string).
o SHOULD only be considered valid when on descriptors on index.json within image layout.

o Character set of the value SHOULD conform to alphanum of A-za-ze-9 and separator set of -. :@/+
o The reference must match the following grammar:

ref ::= component ("/" component)*
component ::= alphanum (separator alphanum)*
alphanum = [A-Za-z0-9]+

separator ::= [-._:@+] | "--"

« org.opencontainers.image.title Human-readable title of the image (string)
« org.opencontainers.image.description Human-readable description of the software packaged in the image (string)

Annotations

m Currently unsupported by build tools

m Just use Labels
m And predefined keys

Annotations

Hopes for the future:
m Better support in Kubernetes
m Better support in build tooling
m Greater awareness and use

Metadata DB

m Store information on images
m Keyed by digest
m Can be updated with events

m Build data, contents and versions,
known vulns

Grafeas

What about the Registry?

= Would like to:
m Search for all tags for digest
m Have audit information
m Plus other metadata

What is it?
Where did it come from?
How can | rebuild it?

Does it have any known vulnerabilities?
S it up-to-date?

“Reproducibility is a virtue”

Dinah McNutt
Google Release Engineer
@dinahSBR

Reproducible Docker Builds

m Use tagged base images
m or digests

m Version package installed software
m run a mirror for total control

Downloading Software

m Be careful when using curl/wget
m Use GPG to verify signatures
m Checksums

Binary Reproducibility

m File timestamps

m Other metadata
m Build container IDs
m Created timestamp

Bazel

@adrianmouat
Container Solutions

DEMO TIME!

@adrianmouat
Container Solutions

Distroless

m Base Images from Google

m Only contain runtime dependencies
m No package manager or shell

m Great for vulnerability scans

m And reducing image size

So we should all use Bazel?

m Err, probably not:
m |t's big and complicated
m Wants to build all your stuft
m Large learning curve
m Docs need work

What is it?
Where did it come from?
How can | rebuild it?

Does it have any known
vulnerabilities?
Is it up-to-date?

Py

|;;.;; Twistlock

Photo by Agqua Mechanﬂ

https://www.flickr.com/photos/aquamech-utah/

Up-to-date vs Stable

m [ension
m Don't want breaking changes
m Do want bug-fixes!

m Good test suite

m Semantic versioning
m Pin to minor version (4.1.x)

Library Dependencies

m Generally tooling available
m Maven display-plugin-updates
m NPM updtr

Base Images

m Easy to use out-of-date base images
m Constant rebuilds?
m Hooks?

@adrianmouat
Container Solutions

m Digests are great
m Content hashes
= Unwieldy

m GPG signing useful

Notary

m Complete signing solution

m TOFU

m Implements TUF

m Protects against range of attacks
m Including replay attacks

Only run images from a controlled
registry

m Not easily possible
m Should be

k

e
Ncoc

ID Ha

L
.

>
.
ure

“~...To The Fut

https://www.flickr.com/photos/jdhancock/9544541664

More holistic solutions

&

5

OPENSHIFT docker

More tooling

Grafeas

i< HARBOR™

Trow.lo

m KWTFIGOIYC
m Use immutable tags
m Use Labels
m Use Tools
m Notary, registries,
scanners

References

Trow https://trow.io

Grafeas https://grafeas.io/

OCl Annotations
https://github.com/opencontainers/image-spec/blob/master/annotations.md
Release Engineering (from Google SRE Book)
https://landing.google.com/sre/book/chapters/release-engineering.html
AlwaysPulllmages Admission Controller
https://kubernetes.io/docs/admin/admission-controllers/#alwayspullimages
ImageStreams in OpenShift https://blog.openshift.com/image-streams-fag/
Docker EE https://www.docker.com/enterprise-edition

Notary https://github.com/theupdateframework/notary

Weave Flux https://www.weave.works/oss/flux/

Clair https://github.com/coreos/clair

Aqua https://www.aguasec.com/

NeuVector https://neuvector.com/

Twistlock https://www.twistlock.com/

Bazel https://bazel.build/

Kaniko https://github.com/GoogleContainerTools/kaniko

https://trow.io
https://grafeas.io/
https://github.com/opencontainers/image-spec/blob/master/annotations.md
https://landing.google.com/sre/book/chapters/release-engineering.html
https://kubernetes.io/docs/admin/admission-controllers/#alwayspullimages
https://blog.openshift.com/image-streams-faq/
https://www.docker.com/enterprise-edition
https://github.com/theupdateframework/notary
https://www.weave.works/oss/flux/
https://github.com/coreos/clair
https://www.aquasec.com/
https://neuvector.com/
https://www.twistlock.com/
https://bazel.build/
https://github.com/GoogleContainerTools/kaniko

Workspace File

load("@bazel_tools//tools/build_defs/repo:http.bz1l", "http_archive")

http_archive(

name = "io_bazel_rules_docker",
sha256 = "29d109605e0d61T9c892584f07275b8c9260803bfOc6fcb7de2623b2bedc910bd”,
strip_prefix = "rules_docker-0.5.1",

urls = ["https://github.com/bazelbuild/rules_docker/archive/v0.5.1.tar.gz"],)

load(
"@io_bazel_rules_docker//container:container.bzl",
"container_pull”, "container_image",
container_repositories = "repositories",)

Build File Pt 1

load("@io_bazel_rules_docker//go:image.bzl",
"go_image")

go_image (
name = "foo",
srcs = ["code/main.go"],
goarch = "amdé4”,
goos = "linux",
pure = "on",

Build File Pt 2

load("@io_bazel_rules_docker//container :container
.bz1", "container_push")

container_push(

name = "publish”,

image = ":foo",

format = "Docker”,

registry = "index.docker.1io",
repository = "amouat/go-example”,

tag = "test",)

Bazel Run

S bazel run //:publish
INFO: Analysed target //:publish (1 packages loaded).
INFO: Found 1 target...
Target //:publish up-to-date:

bazel-bin/publish
INFO: Elapsed time: 0.430s, Critical Path: 0.02s
INFO: O processes.
INFO: Build completed successfully, 1 total action
INFO: Build completed successfully, 1 total action
index.docker.io/amouat/go-example:test was published with
digest:
sha256:0f2c5d8cdefcOb74eafce7fc65064a734¢c1677017401331043168d160
893f9bchb

Bazel Run

S bazel clean
INFO: Starting clean (this may take a while). Consider using
--async if the clean takes more than several minutes.

S bazel run //:publish

index.docker.io/amouat/go-example:test was published with
digest:
sha256:0f2c5d8cdefcOb74eafce7fc65064a734¢c1677017461331643168d10
893f9bc6

Bazel Output

S docker save amouat/go-example:test -o test.tar
S tar tvf test.tar

-rw-r--r-- 0/0 710 1970-061-01 01:00
5d629c1a7df55c2c46...688a29340. json

drwxr-xr-x 0/0 B0 1970-01-01 01:00
b8eB®7a381fbd8ca7cO...3eda96f8d3/

-rw-r--r-- 0/0 3 1970-01-01 01:00

b8eB7a381fbd8ca7cO...96f8d3/VERSION

S docker inspect -f "{{.Created}}" amouat/go-example:test
1970-01-01T00:00:00Z

