Kata Containers: the speed of containers, security of VMs - even in a nested environment!

Eric Ernst, Intel K. Y Srinivasan, Microsoft Shiny Sebastian, Intel

Agenda

- Overview of Kata
- Nested use case
- KVM on Hyper-V
- A look at Kata nested

2

 (\mathcal{R}) (oci) Kata-runtime Kernel virtual Machine hypervisor

 \Re V (oci) Kata-runtime Kata-agent Kernel virtual Machine hypervisor vsock

Nested Use Case

Nested Kata use case

- How many?
 - What's an appropriate pool size for tenant 1, or a particular workload?
 - Does each untrusted workload need its own VM?
- Infrastructure work:
 - Need to manage virtual machine creation, and tag each per workload/tenant.
 - May need to size virtual machines conservatively based on what a workload *could* need
 - SDN, SDS and fabric overheads with spinning up VMs

(NAMESPACE 1) (NAMESPACE 2)

Nested Kata use case

USER FROM TENANT #1

RINGØ KUBERNETES

(NAMESPACE 1) (NAMESPACE 2)

Nested Kata use case

USER FROM TENANT #1

- Better utilization of resources:
 - No need to size VM based on workload needs
 - No need to size node pool based on potential tenants potential need
 - Pool is shared at a finer granularity

(NAMESPACE 1) (NAMESPACE 2)

KVM on Hyper-V

Nested Kata

Nested Kata: CPU Measurements

Approximately 3% degradation seen when running with varying Number of threads on prime number calculation workload

Nested Kata Network I/O

Nested Kata Network I/O

CORES USED

* measured utilization in LO

Nested Kata: Storage I/O - setup

Nested Kata Storage I/O

- Nested is relatively expensive
- High amount of iowait observed in L1 during L2 random read testing

Nested Kata Storage I/O

- Nested is relatively expensive
- High amount of iowait observed in L1 during L2 random read testing

* measured utilization in L1

Reducing Kata's footprint

- Minimal kernel
- Minimal rootfs
- Minimally configured QEMU

	CONTHINER WORK	(LOAD
	MINIMAL ROOTFS	5
	KERNEL	
\. ~	KATA CONTAI	NER
	CONTAINER WOOR	KLORD
	MINIMAL ROOTF	2 ²
	KERNEL	
	CONTRACTOR CONTR	4INER
C+12	: Host Memor	RY Ctr1: Ctr2:
MIN. Rostf	5	· Kernel · Kernel · Workland · Workland · DEMU · DEMU

(+11:

MIN

ROOTFS

Reducing Kata's footprint

- Minimal kernel
- Minimal rootfs
- Minimally configured QEMU
- DAX/NVDIMM

Reducing Kata's footprint

DAT

NND

- Minimal kernel
- Minimal rootfs
- Minimally configured QEMU
- DAX/NVDIMM
- De-duplicating memory

Co	NTHINER WORK	LOAD		
r-C	MINIMAL ROOTFS			
	KERNEL KATA CONTAI	NER		throttlad KSM
 C	ONTHINER LOOR	KLOAD		
manand	MINIMAL ROOTF	·s	<u> </u>	
Ţ	KERNEL			
	KATA CONTA			
MINI. RobTFS	17057 MEMO	т 2 М Р.	IERGED PAGES	

Nested Kata container density

Dockerhub workload	Memory footprint		Containers/GB		
	Kata	runc	Kata	runc	
busybox (small)	93.2 MB	682 KB	11	1535.7	
mysql (medium)	135.5 MB	160.8 MB	7.6	6.5	
elasticsearch (large)	2.5 GB	2.2 GB	0.4	0.5	

"it depends"

Summary, next steps

Next Steps

- Nesting:
 - Continued improvements for KVM on Hyper-V
 - Optimizations for L2:
 - Investigate more efficient L2 storage options
 - General efficiency improvements to minimize nested cost
- Kata:
 - Improvements on density as well as security
 - Released support for NEMU

Where can you get Kata?

- Dockerhub:
 - katadocker/kata-deploy
- Packages:
 - Clear linux, Snap
 - Built for CentOS, Fedora, SLES, RHEL, Ubuntu
- Running on public Cloud:
 - ACS-engine support in Azure
 - Anywhere bare-metal or nested virtualization is supported, including AWS, Azure, GCP, packet.net, Vexxhost

THE LINUX FOUNDATION OPEN SOURCE SUMMIT EUROPE

