
Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Deferred Problem
Issues With Complex Dependencies Between Devices in Linux Kernel

Andrzej Hajda

Samsung R&D Institute Poland

October 19, 2018

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 1/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

1 Problem Description - Hardware

2 Problem Description - Software

3 Current Solutions

4 Proposition

5 Summary

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 2/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Section 1

Problem Description - Hardware

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 3/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Device with One Interface

PCI cards, USB devices:

only one control interface,

connected to only one device (bus master) via control interface,

all signals are supplied by the bus or does not need to be controlled by software
(including power),

usually are discoverable,

devices forms nice tree of dependencies.

One-interface-per-device design comes from PC World (really?).

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 4/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Device with Multiple Interfaces

Integrated circuit (IC, chip) or Semiconductor intellectual property core (IP):

connected to many devices - power supplies, clock lines, gpios, data buses,

multiple control buses or no control bus at all (only power and gpio lines),

requires close cooperation with connected devices,

dependencies between devices forms complicated graphs (sometimes even with
cycles).

Typical for Embedded World but not-limited to.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 5/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Nice Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,

10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Typical Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),

interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Typical Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,

clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Typical Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,

reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Typical Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,

TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Typical Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,

MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Typical Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,

Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Typical Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,

I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Nasty Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,

SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Nasty Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,

HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Nasty Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,

9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Nasty Example

MHL 3.0 Transmitter (SiI8620) pins:

I2C slave control interface - to I2C master,
10 power lines - to different power supplies (at least 2),
interrupt line - to interrupt controller,
clock line - to clock controller,
reset line - to GPIO controller,
TMDS lines - to HDMI video source,
MHL lines - to MHL connector,
Hot-Plug line - to GPIO controller,
I2C slave (DDC) - to I2C master,
SPI slave control interface - to SPI master,
HSIC - for tunneling USB traffic in MHL stream,
9 GPIOs - for different purposes.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 6/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Nice Picture

Control buses:
PlatformBus

IRQ GPIO HDMI I2C

PMIC MHL

CON

Clocks SPI USB

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 7/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Scary Picture

Control buses + links from MHL:
PlatformBus

IRQ GPIO HDMI I2C

PMIC MHL

CON

Clocks SPI USB

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 7/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Hardware: Even Scarier Picture, but not the Scariest One

Control buses + links from MHL + links between other devices:
PlatformBus

IRQ GPIO HDMI I2C

PMIC MHL

CON

Clocks SPI USB

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 7/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Section 2

Problem Description - Software

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 8/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Kernel: Driver Model

The Kernel uses following entities:

device - a physical device that is attached to a bus,
driver - a software entity that can be associated with a device and performs
operations with it,
bus - a device to which other devices can be attached.

One device can be attached to only one bus (control interface).

Devices without bus are attached to platform pseudo-bus.

Devices forms tree based on control bus - bus master is a parent of devices on the
bus.

It looks like Linux Kernel Driver Model is oriented towards handling one-interface
devices.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 9/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Kernel: Driver Model - Matching Devices vs Drivers

One driver can be bound to many devices, but device can be bound to only one
driver at a time.

Every time device is registered it is matched against registered drivers.

Every time driver is registered it is matched against registered and unbound
devices.

If the match succeeds device is probed with the driver, if the probe succeeds the
driver is bound to the device.

In case driver is unregistered it is unbound from all bound devices.

In case device is unregistered it is unbound from its driver.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 10/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Kernel: Driver Model - Life Time of Device and Driver

Devices can be registered and unregistered at any time:

Kernel initialization (platform code, DeviceTree),
bus registration/unregistration,
physical device attach/detach,
...

Drivers can be registered and unregistered at any time:

Kernel initialization,
module insert/removal,
...

Devices can be also bound/unbound anytime on user demand.

Since unbound device is almost non-functional, for the rest of the presentation term
device will used to describe bound device.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 11/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Kernel: Resources

Some devices (consumers) use objects (resources) provided by other devices
(providers).

Sample resources present in Kernel:

natural candidates: clocks, regulators, gpios, interrupts, ...
framework convention: panels, bridges, camera sensors, ...

Some resources are required - device cannot be bound without them.

Some are optional - if available device can work better.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 12/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Kernel: Problem Description

So where is the problem?

Probing order is undetermined: consumer can be probed before required resources
appears.

Resource can disappear (provider is unbound).

Consumer can disappear (consumer is unbound).

How to get optional resource? What if provider is unbound?

What about semi-circular dependencies? (see next slide).

Resource requirements are evaluated during probe.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 13/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Kernel: Problem Description - Semi-circular Dependency

What it is?

Device A provides resource a, but to full work it requires resource b.
Device B requires a then it can provide resource b.

If we assume resource gathering can be done only in probe it will never work.
But it can work this way:

Device A registers resource a - probe time.
Device B grabs a, then registers b - probe time.
Device A grabs b - later (when?).

So lets treat b as optional resource for A, the problem becomes ”optional resource”
issue.
But does it happens in real world? Yes, in media, display stacks: core (ISP, DC)
provides clock, required by peripherals (camera sensors, encoders), but it also requires
resources provided by peripherals.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 14/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Section 3

Current Solutions

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 15/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Changing Bind Order

We can use initcalls, modify Makefiles, DT files to change subsystem/driver/device
registration order. Why is it BAD practice?

Different platforms have different tree of dependencies, but the same devices.

Different Kernel configurations can change bind order.

It does not work with modules.

It depends on too many factors to be maintainable in sane way.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 16/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Disable Device/Driver Unplugging

Prevent modules from being unloaded, by playing with module ref-counting:

Avoidance: Quite ugly and counter idea of modules.

It protects only module from being unloaded, but does not protect the driver from
unbinding.

Disallow users from binding/unbinding devices from the driver:

Again not so pretty, again avoidance.

Could make sense only in case of some core devices.

It is just removing some sysfs entries, nothing more. There could be other ways to
provoke device unbind.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 17/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Deferred Probe - Description

How does it work?

During device probe driver gathers required resources, if some are unavailable it
exits with -EPROBE ERROR.

Driver core puts such device on special list for re-probing.

Successful probe of any device triggers re-probing all deferred devices, with hope
that successful probe caused appearance of some resources.

To avoid too many re-probes trigger starts working in late initcall - after
registering all built-in device drivers.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 18/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Deferred Probe - Pros and Cons

Advantages:

Very simple, non-invasive mechanism.

No big changes in drivers and the core.

Disadvantages:

Suboptimal - some devices can be re-probed multiple times.

Can significantly delay start of important subsystem.

Does not handle resource disappearance.

Does not handle optional resources.

It assumes resource can be registered only in probe call - easy to fix if necessary.

We really do not know if the resource will be available - client can defer forever.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 19/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Device Links - Description

How does it work?

One(who?) can create link from consumer to provider devices.

Driver core guarantees then that consumer will not be probed before provider or
provider will not be unbound before consumer.

Suspend/resume order is also guaranteed, and runtime suspend/resume order can
be, depending on the flags.

To avoid circular dependencies link is verified before adding.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 20/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Device Links - Pros and Cons

Advantages:

Idea quite straightforward.

Solves provider unbind problem.

Integrated with PM and RPM.

Disadvantages:

Since dependency is usually discovered in consumer probe it does not solve probe
order in most cases.

Does not solve optional resource issue.

Requires mapping of the resource and provider to devices, this is not always the
case (for example drm dev has no associated device).

Limitations of the link creation time causes subtle issues (solvable?).

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 21/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Device Links - Subtle Issue

Resource’s lifetime is little different than lifetime of the provider device - resource
usually is registered before device is probed and is unregistered before device is
unbound.
Corner case:

Probe of Consumer Probe of Provider

register resource(a);
r= get resource(a);
device link add(dev, r→dev); // provider’s probe not finished
return 0; return 0;

In this example device link is created during probe of both: the provider and the
consumer, but it means the provider is not yet probed - inconsistent state, does not
work with the framework. On the other side when it should be created? Shall we defer
till provider is fully probed?

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 22/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Components - Description

Features:

It is specialized framework to synchronize multiple devices.

Master device in probe calls component master add* with list of components to
wait for and with bind/unbind callbacks.

Component devices in probe calls component add with provided bind/unbind
callbacks - no specific order required.

All bind callbacks are called when all components and master are added -
synchronization point.

Two stage device initialization: probe and bind.

All-or-nothing strategy: bind does not occur until all components are ready, and if
at least one component or master is to be removed unbind occurs.

Here the master is a consumer, and the components are providers.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 23/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Components - Pros and Cons

Advantages:

It is optimal (no re-probing due to missing components).

It handles correctly component/master unbind/re-bind.

Disadvantages:

Specialized framework - solves only subset of the problems.

No support for optional components.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 24/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Current Solutions: Missing Parts - Summary

Optimal bind/probe order.

Optional resources gathering.

Unbind of providers of optional resources.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 25/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Section 4

Proposition

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 26/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking

What if the consumer can track interesting resources appearance/disappearance?

Instead of probe deferring consumer will register callbacks which will be called
when requested resources appeared or will disappear.

Lack of resource will not result in probe error, device will finish probe successfully,
but will wait with further initialization till required resources are present.

The same mechanism can be used for required and optional resources.

Unprobed Probed

probe

remove

Functional

resources appear

resources disappear

AllFunctional

optional resources appear

optional resources disappear

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 27/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking

What if the consumer can track interesting resources appearance/disappearance?

Instead of probe deferring consumer will register callbacks which will be called
when requested resources appeared or will disappear.

Lack of resource will not result in probe error, device will finish probe successfully,
but will wait with further initialization till required resources are present.

The same mechanism can be used for required and optional resources.

Unprobed

Probed

probe

remove

Functional

resources appear

resources disappear

AllFunctional

optional resources appear

optional resources disappear

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 27/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking

What if the consumer can track interesting resources appearance/disappearance?

Instead of probe deferring consumer will register callbacks which will be called
when requested resources appeared or will disappear.

Lack of resource will not result in probe error, device will finish probe successfully,
but will wait with further initialization till required resources are present.

The same mechanism can be used for required and optional resources.

Unprobed Probed

probe

remove

Functional

resources appear

resources disappear

AllFunctional

optional resources appear

optional resources disappear

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 27/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking

What if the consumer can track interesting resources appearance/disappearance?

Instead of probe deferring consumer will register callbacks which will be called
when requested resources appeared or will disappear.

Lack of resource will not result in probe error, device will finish probe successfully,
but will wait with further initialization till required resources are present.

The same mechanism can be used for required and optional resources.

Unprobed Probed

probe

remove

Functional

resources appear

resources disappear

AllFunctional

optional resources appear

optional resources disappear

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 27/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking

What if the consumer can track interesting resources appearance/disappearance?

Instead of probe deferring consumer will register callbacks which will be called
when requested resources appeared or will disappear.

Lack of resource will not result in probe error, device will finish probe successfully,
but will wait with further initialization till required resources are present.

The same mechanism can be used for required and optional resources.

Unprobed Probed

probe

remove

Functional

resources appear

resources disappear

AllFunctional

optional resources appear

optional resources disappear

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 27/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Pseudo-code

How the code could look like?

int dev_probe (...)

{

// probe initialization

restrack_register(req_res ,

... required resources ...

);

}

int dev_remove (...)

{

restrack_unregister(req_res );

// remove cleanup

}

int req_res_on ()

{

// final initialization

restrack_register(opt_res ,

... optional resources ...

);

}

int req_res_off ()

{

restrack_unregister(opt_res );

// cleanup

}

int opt_res_on ()

{

// start using optional resources

}

int opt_res_off ()

{

// stop using optional resources

}

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 28/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Pseudo-code

How the code could look like?

int dev_probe (...)

{

// probe initialization

restrack_register(req_res ,

... required resources ...

);

}

int dev_remove (...)

{

restrack_unregister(req_res );

// remove cleanup

}

int req_res_on ()

{

// final initialization

restrack_register(opt_res ,

... optional resources ...

);

}

int req_res_off ()

{

restrack_unregister(opt_res );

// cleanup

}

int opt_res_on ()

{

// start using optional resources

}

int opt_res_off ()

{

// stop using optional resources

}

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 28/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Pseudo-code

How the code could look like?

int dev_probe (...)

{

// probe initialization

restrack_register(req_res ,

... required resources ...

);

}

int dev_remove (...)

{

restrack_unregister(req_res );

// remove cleanup

}

int req_res_on ()

{

// final initialization

restrack_register(opt_res ,

... optional resources ...

);

}

int req_res_off ()

{

restrack_unregister(opt_res );

// cleanup

}

int opt_res_on ()

{

// start using optional resources

}

int opt_res_off ()

{

// stop using optional resources

}

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 28/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Pseudo-code

How the code could look like?

int dev_probe (...)

{

// probe initialization

restrack_register(req_res ,

... required resources ...

);

}

int dev_remove (...)

{

restrack_unregister(req_res );

// remove cleanup

}

int req_res_on ()

{

// final initialization

restrack_register(opt_res ,

... optional resources ...

);

}

int req_res_off ()

{

restrack_unregister(opt_res );

// cleanup

}

int opt_res_on ()

{

// start using optional resources

}

int opt_res_off ()

{

// stop using optional resources

}

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 28/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Consumer’s PoV (1)

How does it work from consumer’s point of view?

* res on callback is called:

immediately from restrack register, if all tracked resources are available during
registration,
otherwise immediately after all tracked resources becomes available.

* res off callback is called:

immediately before one of tracked resources is to be removed,
otherwise immediately from restrack unregister - if all tracked resources are available
during unregistration.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 29/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Consumer’s PoV (2)

What happens when:

all resources are available (AllFunctional) and optional resource is about to
remove:

callback opt res off is called,
driver stops using optional resources.

all resources are available (AllFunctional) and required resource is about to
remove:

callback req res off is called,
it calls restrack unregister(opt res),
callback opt res off is called,
driver stops using optional resources,
callback req res off is continued,
driver stops using required resources.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 30/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Consumer’s PoV (3)

What happens when:

all resources are available (AllFunctional) and device is about to unbind:

callback dev remove is called,
it calls restrack unregister(req res),
callback req res off is called,
it calls restrack unregister(opt res),
callback opt res off is called,
driver stops using optional resources,
callback req res off is continued,
driver stops using required resources,
callback dev remove is continued,
driver is unbound.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 31/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Provider’s PoV

How does it works from provider’s point of view?

after resource becomes available restrack on(resource id) is called - all trackers are
notified.

before resource removal restrack off(resource id) is called - all trackers are notified.

What is resource id? Something to identify resource even if it is not available, for
example:

DT node of the provider plus optional additional id:
<&ldo3_reg>, <&cmu_disp CLK_PCLK_DSIM0>.

Pair of strings: providers device name and resource name: ("pmic", "ldo3").

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 32/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Framework Requirements

Framework requirements:

The framework must be re-entrant: many drivers are consumers and providers at
the same time - they will call restrack (on|off) in their restrack callbacks.

The framework must be thread safe: different drivers can register trackers or
create resources asynchronously.

The only assumption is that particular tracker can be first registered and then
unregistered, also particular resource can be first created, then destroyed. The
sequence can be repeated multiple times.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 33/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Advantages

Advantages:

One framework solves all three missing issues.

Can smoothly replace and/or co-exist with current solutions.

Looks like natural extension of probe/remove mechanism.

Limits the number of device states and transitions to necessary minimum.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 34/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Implementation Issues

How to do it?

Re-entrancy and thread safety poses implementation challenges.

Different subsystems have different ways of identifying resources. resource id can
be non-trivial to implement, especially in case of pre-DT fuzzy lookup
mechanisms.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 35/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Implementation Details (1)

How re-entrancy and thread safety issues can be solved:

There are four operations: resource-on, resource-off, track-register,
track-unregister.

Lets implement every operation as a task (callback + context on which it should
be called).

Serialize tasks by putting them on the queue.

There will be one queue per resource id, the queue will have also owner field.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 36/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Implementation Details (2)

How tasks are queued/executed? There are three cases:

Queue owner is not set - in this case the process becomes queue owner and
executes this and all tasks which will be queued meantime to this queue until the
queue is empty, then queue owner is zeroed, then function ends.

Queue owner is set and the owner is the same as current process (re-entrancy) -
again all tasks are processed, but the owner is not zeroed.

Queue owner is set and the owner is different from the current process (other
process is working on the queue) - the task is just added to the queue, if the
process wants to wait for the task to be executed it should wait for end of queue
processing.

Waiting is necessary for off/unregister tasks - callers should be sure that after call it
can remove resource/tracker.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 37/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Implementation Details (3)

Real world analogy:

There are multiple workers which should perform different tasks on the machine.

If some worker receives task, he goes to the machine.

If the machine is available he takes it and performs this task, otherwise he gives
the task to the worker holding the machine.

If during his work it appears the task requires other subtasks to be done he
performs them as well.

If during his work another worker brings another task, he performs it as well.

After finishing all tasks he leaves the machine.

If another worker wants to be sure his task was done he should wait till machine is
available.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 38/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Implementation Details (4)

Can it deadlock?

This mechanism requires lock only for adding/removing tasks to/from the queue -
non-blocking operations.

Waiting is done only in the 3rd case, but it does not block queue processing.

Above reasoning suggests the algorithm itself is non-blocking - the only blockers
can be due to bugs in drivers using this framework.

Unfortunately there are still corner cases it can block - should be solvable.

No, it is waste of time, let’s try different approach.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 39/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Implementation Details (4)

Can it deadlock?

This mechanism requires lock only for adding/removing tasks to/from the queue -
non-blocking operations.

Waiting is done only in the 3rd case, but it does not block queue processing.

Above reasoning suggests the algorithm itself is non-blocking - the only blockers
can be due to bugs in drivers using this framework.

Unfortunately there are still corner cases it can block - should be solvable.

No, it is waste of time, let’s try different approach.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 39/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - New Approach

Let’s avoid wheel reinventing, try to use existing Kernel framework - asynchronous
function calls.

Global list of resource state structures - one state per resource.

Every state contains: current state, linked list of resource trackers, mutex, async
cookie.

State is created on first user request: res-register, res-on.

Modification of state is performed under the mutex.

Notification callbacks are scheduled using async schedule.

If we need synchronization barrier we use async synchronize cookie: before/after
resource-off, restrack-unregister.

This is my fresh idea (3 days old) - untested, even not brainstormed, so please do
not be cruel if if is flawed.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 40/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - The Code

OK this is theory, but where is the real code?

The code already exists - RFC patchset was posted.

It uses different synchronization mechanism (harder to read, different queue
granularity, different waiting implementation, can deadlock).

Beside it needs some polishing/testing/review, maybe some rework.

Lacks support for non-DT lookup mechanisms - I have some ideas how to deal
with it but I would prefer to add them later - it would require cleanup of fuzzy
resource lookup mechanism per every framework - quite annoying ungrateful task.

Hopefully next version will be posted in near future.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 41/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - The Code

OK this is theory, but where is the real code?

The code already exists - RFC patchset was posted.

It uses different synchronization mechanism (harder to read, different queue
granularity, different waiting implementation, can deadlock).

Beside it needs some polishing/testing/review, maybe some rework.

Lacks support for non-DT lookup mechanisms - I have some ideas how to deal
with it but I would prefer to add them later - it would require cleanup of fuzzy
resource lookup mechanism per every framework - quite annoying ungrateful task.

Hopefully next version will be posted in near future.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 41/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - Code Example

Old code
int dev_probe (...)

{

...

ctx ->pclk = devm_clk_get(dev , "pclk");

if (IS_ERR(ctx ->pclk)) {

ret = PTR_ERR(ctx ->pclk);

if (ret != -EPROBE_DEFER)

dev_err(dev , "cannot get pclk\n");

return ret;

}

ctx ->vdd = devm_regulator_get(dev , "vdd");

if (IS_ERR(ctx ->vdd)) {

ret = PTR_ERR(ctx ->vdd);

if (ret != -EPROBE_DEFER)

dev_err(dev , "cannot get vdd\n");

return ret;

}

...

}

New code
int dev_probe (...)

{

rtrack = devm_restrack_register(dev , lcd_callback ,

regulator_bulk_restrack_desc (&ctx ->supplies [0]),

regulator_bulk_restrack_desc (&ctx ->supplies [1]),

clk_restrack_desc (&ctx ->pll_clk , "pll_clk"),

clk_restrack_desc (&ctx ->bus_clk , "bus_clk"),

phy_restrack_desc (&ctx ->phy , "dsim"),

);

return PTR_ERR_OR_NULL(rtrack );

}

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 42/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Proposition: Resource Tracking - TODO

Ressurect old patches.

Rework/redesign/analyze synchronization code.

Consider non-DT lookup mechanism.

Polish the code.

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 43/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Section 5

Summary

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 44/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

Discussion

Q & A

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 45/46



Problem Description - Hardware Problem Description - Software Current Solutions Proposition Summary

References

Probe deferral mechanism: https://lwn.net/Articles/450178/

Device links framework:
https://www.kernel.org/doc/html/latest/driver-api/device link.html

Component framework (kernel-doc patch, not merged):
https://lore.kernel.org/patchwork/patch/780548/

Resource tracking framework: https://lwn.net/Articles/625454/

Andrzej Hajda Samsung R&D Institute Poland

Deferred Problem 46/46

https://lwn.net/Articles/450178/
https://www.kernel.org/doc/html/latest/driver-api/device_link.html
https://lore.kernel.org/patchwork/patch/780548/
https://lwn.net/Articles/625454/

	Problem Description - Hardware
	Problem Description - Software
	Current Solutions
	Proposition
	Summary

