
Open First

Cooking a Debian System: One,
Two, Debos!
Ana Guerrero López

Collabora
October 22, 2018

Open First

Who I am

¡Hola!
▶ Free software user and enthusiast since 2001
▶ Debian Developer since 2006
▶ working at Collabora since earlier this year

Open First

Presentation Outline

Introduction
What is debos?
Who is using debos?

Working with debos
A simple recipe
Actions with examples
Final example: a bootable image

Future plans

Open First

So … What is debos?

▶ A tool written in Go to create Debian images. It also works with Debian
derivatives

▶ It creates the images following sequentially the steps provide in a recipe file
▶ Every step must be an action known by debos, there are 12 different actions
▶ You don’t need to be root to build the images

Open First

So … What is debos?

▶ Tool designed to be easily integrated in CI systems
▶ Modular: new actions can be implemented easily
▶ Recipe is a YAML file which is pre-processed though Go’s text templating engine
▶ It can be run in non-Debian systems with a docker container.

https://golang.org/pkg/text/template

Open First

Architectures supported by debos

▶ Potentially can support every architecture that’s both supported by Qemu and
available in Debian

▶ Tested and working on: armhf, armel, arm64, i386, amd64, mips, mipsel, mips64el
(debian ports of x86, ARM, MIPS)

▶ … and riscv64 (https://wiki.debian.org/RISC-V)

https://wiki.debian.org/RISC-V

Open First

Below debos: fakemachine and Qemu

▶ debos uses a library named fakemachine to create and spawn virtual machines for
building images with debos

▶ fakemachine setups qemu-system using the /usr from the host system to run a
virtual machine with the same architecture as the host

▶ This allows debos to work with root privileges inside this virtual machine
▶ debos setups qemu-user emulation to run binaries from foreign architectures
▶ For fakemachine to work, make sure your user has permission to use /dev/kvm

Open First

What is not debos

▶ It’s not a build system!
▶ It’s not the official way of installing Debian. It’s debian-installer.

Open First

Other tools to create Debian images

▶ There are a bunch of other tools to create Debian images, too many to do a
comparison!

▶ Check the Debian wiki if you’re curious:
https://wiki.debian.org/SystemBuildTools

https://wiki.debian.org/SystemBuildTools

Open First

Who is using debos? - Apertis

▶ Apertis is an Open Source infrastructure
tailored to the automotive needs and fit for a
wide variety of electronic devices.

▶ Amongst other things, Apertis is a
Ubuntu/Debian-derived distribution with its
own repositories

▶ debos is used to create the different images
created by the project.

▶ https://images.apertis.org/

https://wiki.apertis.org/Main_Page
https://images.apertis.org/

Open First

Who is using debos? - KernelCI.org

▶ KernelCI.org is a community based, open source distributed test automation
system focused on upstream Linux kernel development.

▶ KernelCI builds many kernel trees automatically, boots them on a wide array of
devices and runs test plans for a few subsystems.

▶ debos is used for creating the rootfs images used by the test plans.

https://kernelci.org

Open First

Who is using debos? - other projects

▶ https://github.com/VitroTech/Vitrobian/ for the Vitro Crystal board
▶ https://github.com/ant9000/acmesystems-image-builder for the AcmeSystems

boards
▶ https://gitlab.com/debian-pm/tools/rootfs-builder-debos Tools for maintaining

the debian-pm packages

https://github.com/VitroTech/Vitrobian/
https://github.com/ant9000/acmesystems-image-builder
https://gitlab.com/debian-pm/tools/rootfs-builder-debos

Open First

Presentation Outline

Introduction
What is debos?
Who is using debos?

Working with debos
A simple recipe
Actions with examples
Final example: a bootable image

Future plans

Open First

A small debos recipe

architecture: armhf

actions:
- action: debootstrap

suite: "stretch"
components:

- main
mirror: https://deb.debian.org/debian
variant: minbase

- action: pack
file: rootfs.tar.gz
compression: gz

This should be saved as small-recipe.yaml

Open First

Running our small debos recipe

$ debos small-recipe.yaml
Running /debos --artifactdir /home/ana/code /home/ana/code/small-recipe.yaml
2018/09/28 11:23:29 ==== debootstrap ====
2018/09/28 11:23:29 Debootstrap | W: Unable to read /etc/apt/apt.conf.d/ - DirectoryExists (2: No such file or directory)
2018/09/28 11:23:29 Debootstrap | I: Retrieving InRelease
2018/09/28 11:23:32 Debootstrap | I: Retrieving Release
2018/09/28 11:23:33 Debootstrap | I: Retrieving Release.gpg
2018/09/28 11:23:33 Debootstrap | I: Checking Release signature
2018/09/28 11:23:33 Debootstrap | I: Valid Release signature (key id 067E3C456BAE240ACEE88F6FEF0F382A1A7B6500)
2018/09/28 11:23:34 Debootstrap | I: Retrieving Packages
2018/09/28 11:23:37 Debootstrap | I: Validating Packages
2018/09/28 11:23:39 Debootstrap | I: Resolving dependencies of required packages...

...

2018/09/28 11:27:27 Debootstrap (stage 2) | I: Configuring libc-bin...
2018/09/28 11:27:27 Debootstrap (stage 2) | I: Configuring ca-certificates...
2018/09/28 11:27:37 Debootstrap (stage 2) | I: Base system installed successfully.
2018/09/28 11:27:38 ==== pack ====
2018/09/28 11:27:38 Compression to /home/ana/code/rootfs.tar.gz
Powering off.
2018/09/28 13:27:44 ==== Recipe done ====

Open First

Templating: parameters

▶ We can use Go’s template package text/template to introduce parameters in
the YAML recipe file.

▶ This allows one to reuse the same recipe to be build with different parameters.
▶ For example, if we want to use the same recipe for differents arch and Debian

release:
$ debos -t suite:"stretch" -t arch:"amd64" recipe.yaml
$ debos -t suite:"buster" -t arch:"arm64" recipe.yaml

Open First

debos recipe with parameters

{{- $arch := or .arch "arm64" -}}
{{- $suite := or .suite "stretch" -}}
{{- $image := or .image (printf "%s-%s.tgz" $suite $arch) -}}

architecture: {{ $arch }}

actions:
- action: debootstrap

suite: {{ $suite }}
components:

- main
mirror: https://deb.debian.org/debian
variant: minbase

- action: pack
file: {{ $image }}
compression: gz

Open First

Templating: conditional

{{- if eq $type "tools" "development" }}
- action: apt

packages:
- vim
- git

{{- end -}}

...

- action: apt
recommends: false
packages:

- adduser
- sudo

{{- if eq $arch "armhf" "arm64" }}
- python-libsoc

{{- end }}

Open First

debos actions

There are currently 12 actions that can be used by the recipes:

apt image-partition pack
debootstrap ostree-commit raw
download ostree-deploy run

filesystem-deploy overlay unpack

The former recipe used two actions:
▶ debootstrap: construct the target rootfs with debootstrap
▶ pack: create a tarball with the target filesystem

Open First

What is debootstrap?

▶ debootstrap allows the installation of a Debian base system from scratch.
▶ It works by downloading all the .deb files from a mirror site and carefully

unpacking them into a directory which can eventually be chrooted into
▶ it’s able to installs the system without requiring the availability of dpkg or apt,

which mean you can use deboostrap from a non Debian system.
▶ More info at https://wiki.debian.org/Debootstrap

https://wiki.debian.org/Debootstrap

Open First

Action apt

- action: apt
recommends: bool
packages:

- package1
- package2
- package3

▶ This action installs packages and their dependencies to the target rootfs with ’apt’.
▶ There is an option to not install Recommends packages.
▶ If the package is not in debian main, e.g. linux-firmware make sure non-free

has been added in the debootstrap action.

Open First

Example: action apt

architecture: armhf

actions:
- action: debootstrap

suite: "stretch"
components:

- main
- contrib
- non-free

mirror: https://deb.debian.org/debian
variant: minbase

- action: apt
packages:
- sudo
- openssh -server
- adduser
- firmware -linux

Open First

Action download

- action: download
url: https://example.domain/firmware.tgz
name: firmware
unpack: true
compression: gz

▶ Download a single file from the internet and unpack it in place if needed.
▶ This action doesn’t place the file inside into the target filesystem.

Open First

Action overlay

- action: overlay
origin: name
source: directory
destination: directory

▶ Copy recursively directories and/or files into the target filesystem.
▶ The tree of files and directories is copied directly in the root directory of the

image if destination isn’t set.

Open First

Example: action overlay

{{- $firmware_version := or .firmware_version "1.20171029" -}}

...

- action: download
url: https:// example.domain/{{ $firmware_version }}.tar.gz
unpack: true # Unpack downloaded file
name: firmware # directory name used by other actions

- action: overlay
origin: firmware
source: firmware -{{ $firmware_version }}/boot
destination: /boot/firmware

- action: overlay
description: Log automatically on the serial console
source: overlays/auto-login

Open First

Action run

▶ Allows to run a command or script
▶ …in the target filesystem or in the fakemachine host
▶ In the target filesystem, it will be run with root privileges
▶ There a few variables defined in debos that can be used with this action when

they’re run in the fakemachine host:
▶ ROOTDIR is the root of the target filesystem
▶ ARTIFACTDIR is the artifact directory
▶ IMAGE points to the image (if any)
▶ RECIPEDIR is the recipe directory.

Open First

Example: action run

architecture: arm64

actions:
- action: debootstrap

suite: stretch
components:

- main
mirror: https://deb.debian.org/debian
variant: minbase

- action: run
description: Get package list
chroot: true
command: dpkg -l > list.txt

- action: run
description: Copy file with the list of packages
chroot: false
command: cp ${ROOTDIR}/list.txt ${ARTIFACTDIR}/list.txt

Open First

Example: action run

{{- $arch := or .arch "arm64" -}}
{{- $suite := or .suite "stretch" -}}

architecture: {{ $arch }}

actions:
- action: debootstrap

suite: stretch
components:

- main
mirror: https://deb.debian.org/debian
variant: minbase

- action: run
description: Set hostname
chroot: true
command: echo deb-{{ $suite }}-{{ $arch }} > /etc/hostname

Open First

Actions image-partition + filesystem-deploy

- action: image-partition
imagename: image_name
imagesize: size
partitiontype: gpt
gpt_gap: offset
partitions:

<list of partitions >
mountpoints:

<list of mount points>

- action: filesystem -deploy
setup-fstab: bool
setup-kernel-cmdline: bool

▶ image-partition create an image file, make partitions and format them
▶ filesystem-deploy deploy a root filesystem to an image previously created by

image-partition

Open First

Example: image-partition + filesystem-deploy

- action: image-partition
imagename: "apertis -armhf.img"
imagesize: 4G
partitiontype: gpt
mountpoints:

- mountpoint: /
partition: root
flags: [boot]

partitions:
- name: root

fs: ext4
start: 0%
end: 100%

- action: filesystem -deploy
description: Deploy the filesystem onto the image

Open First

debos recipe: bootable image for a Raspberry Pi 3 B+

debos recipe creating a bootable image for a Raspberry Pi 3 B+
https://github.com/ana/debos-recipes/tree/master/rpi3bplus

https://github.com/ana/debos-recipes/tree/master/rpi3bplus

Open First

Presentation Outline

Introduction
What is debos?
Who is using debos?

Working with debos
A simple recipe
Actions with examples
Final example: a bootable image

Future plans

Open First

Future plans

▶ There is no defined roadmap
▶ Development led by our needs and external contributions
▶ Some ideas for new actions and improvements are listed in the TODO file
▶ Continously improving the documentation!

https://github.com/go-debos/debos/blob/master/TODO

Open First

Find more information

▶ debos at GitHub https://github.com/go-debos
▶ Documentation of all the actions

https://godoc.org/github.com/go-debos/debos/actions
▶ Example used in this presentation https://github.com/go-debos/debos-recipes/

https://github.com/go-debos
https://godoc.org/github.com/go-debos/debos/actions
https://github.com/go-debos/debos-recipes/

Open First

Thank you!

	Introduction
	What is debos?
	Who is using debos?

	Working with debos
	A simple recipe
	Actions with examples
	Final example: a bootable image

	Future plans

