

OpenIoTSummit Europe

Port your camera in 2018

Jacopo Mondi ELC-E 2018 Edinburgh, 10/2018

jacopo@jmondi.org

Hello!

- My name's Jacopo
 - jacopo@jmondi.org
 - irc: jmondi @ freenode
- Embedded Linux and free software developer
- Working as consultant
- Renesas Electronics upstream kernel team

Hello!

Thanks Renesas for supporting me in this activity!

Talk outline

- soc_camera: what's happening?
- What has changed since the soc_camera days:
 - Board files vs firmware support
 - Device discovery and linking
 - Power Management
- Practical example: ov772x.c
- Q/A

The soc_camera framework

soc_camera was GREAT

- Widely adopted
 - Mainline drivers
 - In BSPs and downstream kernel

What's happening to soc_camera

In mainline kernels:

- soc_camera to be 'soon' deprecated (with 'soon' to be defined)
- Last soc_camera dependent bridge driver has been re-implemented last year
- soc_camera sensor drivers are not officially supported anymore

What's happening to soc_camera

File organization:

- drivers/media/platform/ drivers/media/platform/soc_camera/
- drivers/media/i2c/ drivers/media/i2c/soc_camera/
- drivers/media/i2c/mt9t112.c
 drivers/media/i2c/soc_camera/mt9t112.c

soc_camera: the good

- Provides and abstraction to the crude V4L2 APIs
- Ease linking bridge drivers to sensor drivers
- Abstract driver operations to a structure of function pointers

soc_camera: the bad

- Designed for board-files:
 - OF and ACPI support is limited (hold on...)

Use on a set of deprecated operations and frameworks

Media-controller and subdev APIs are game changers
 The single device node abstraction is showing its age...

What has changed?

- device discovery and linking:
 - notifier(s) and async matching

power management

clocks and regulators handling

Device matching and probing:

The old world: i2c addresses based

The new world: firmware based

board file	bridge	soc_camera	sensor	v4l2

Old world

- Device identified by i2c bus number and i2c address
- Device probing is sequential
- Guarantees a bridge driver probes before the sensor driver it will connect to

New world

- Devices are created parsing a firmware description of the system (OF or ACPI)
- Device are identified by they 'firmware node' references
- No guarantees on the probing order

DTB


```
DTB
                            bridge (receiver)
soc{
  vin@xxxxxxxx {
  i2c@xxx {
     sensor@3a {
     };
```


DTB

```
soc{
    vin@xxxxxxxx {
        ...
    };
    i2c@xxx {
        ...
        sensor@3a {
        ...
    };
};
```



```
DTB
soc{
  vin@xxxxxxxx {
  i2c@xxx {
     sensor@3a {
                                    sensor
     };
```


- Device probing is now asynchronous
- Devices are now identified by their firmware node references

- Device probing is now asynchronous
- Devices are now identified by their firmware node references

- V4L2 framework support
 - v4l2-async
 - v4l2-fwnode

Bridge (receiver)

v4l2-fwnode

v4l2-async

```
ports {
    port@0 {
        endpoint@0 {
            remote-endpoint = < >;
        };
    };

port@1 {
        endpoint@0 {
            remote-endpoint = < >;
        };
    };
};
```



```
v4l2-fwnode
Bridge (receiver)
                                                  v4l2-async
                   DTS
ports {
  port@0 {
    endpoint@0 {
      remote-endpoint = < >;
    };
  port@1 {
    endpoint@0 {
      remote-endpoint = < >;
```



```
v4l2-fwnode
                                               v4l2-async
Bridge (receiver)
                  DTS
ports {
 port@0 {
    endpoint@0 {
      remote-endpoint =
    };
 port@1 {
    endpoint@0 {
      remote-endpoint = <
                            struct v4l2 async subdev;
```


Bridge (receiver)

v4l2-fwnode

v4l2-async

Bridge (receiver)

Bridge (receiver)

Bridge (receiver)

- soc_camera can do that
 - Uses v4l2-async
 - Uses v4l2-fwnode

What has changed then?

- soc_camera can do that
 - Uses v4l2-async
 - Uses v4l2-fwnode

- What has changed then?
 - That now subdevs can have notifiers too!
 - Introducing subnotifiers (late 2017)
 Niklas, Sakari Laurent rcar-csi.c

- Non media controller equipped device
 - Single device node abstraction
 - Sequential operations flow

- Non media controller equipped device
 - Single device node abstraction
 - Sequential operations flow

- Media controller equipped device
 - Video device node and subdevice nodes
 - Asynchronous sequence of operations

CACHE

CACHE YOUR

CACHE YOUR SETTINGS

- CACHE YOUR SETTINGS
- Maintain a driver-wise 'power state' notion

- CACHE YOUR SETTINGS
- Maintain a ref-counted driver-wise 'power state' notion
- Apply the cached settings at stream-on time

- CACHE YOUR SETTINGS
- Maintain a ref-counted driver-wise 'power state' notion
- Apply the cached settings at stream-on time
- Use RUNTIME_PM whenever possible

video4linux2: clks, gpios, regulators

 Legacy board files provided to drivers power management routines

video4linux2: clks, gpios, regulators

Use gpio, clock, and regulator frameworks

Collect references from firmaware

```
*_get(dev, "name");
```

Have the driver enable/disable them at s_power time

Practical: ov772x.c

Copy the driver code from soc_camera

Practical: ov772x.c

Remove soc_camera dependencies

media: i2c: ov772x: Remove soc_camera dependencies

Remove soc_camera framework dependencies from ov772x sensor driver.

- Handle clock and gpios
- Register async subdevice
- Remove soc_camera specific g/s_mbus_config operations
- Change image format colorspace from JPEG to SRGB as the two use the same colorspace information but JPEG makes assumptions on color components quantization that do not apply to the sensor
- Remove sizes crop from get_selection as driver can't scale
- Add kernel doc to driver interface header file
- Adjust build system

Practical: ov772x.c

Here is where the fun begins:

\$ git log --oneline drivers/media/i2c/ov772x.c

```
3508949 media: i2c: ov772x: Support frame interval handling
4b610d6 media: ov772x: add media controller support
c2cae89 media: ov772x: support device tree probing
34af7d9 media: ov772x: handle nested s_power() calls
95f5a45 media: ov772x: avoid accessing registers under power saving mode
7b9998c media: ov772x: make set_fmt() and s_frame_interval() return -EBUSY while streaming
795bce4 media: ov772x: create subdevice device node
```


Thank you for the attention

Questions?

This presentation was made with inkscape and LibreOffice: a big thanks to the developers of these two softwares!

