
Bluetooth Mesh and Zephyr
Martin Woolley

Bluetooth SIG Developer Relations Manager, EMEA Twitter: @bluetooth_mdw

point-to-point 1:1

BR/EDR

broadcast 1:m

Low Energy (LE)

many to many m:m

Mesh

Bluetooth now comes in three delicious flavours

relationship between Bluetooth technologies

Bluetooth BR/EDR

Bluetooth mesh networking

Bluetooth Low EnergyRADIO

NETWORKING

Bluetooth Mesh

Networks

multi-hop, multi-path, multicast

Bluetooth Mesh

Node Network Roles

relay nodes

R

RR

R = Relay function on

Relays retransmit messages so that they

can travel further, in a number of “hops”

Some nodes can act as “relays” however

Messages get sent to other nodes that are

in direct radio range of the publishing node

friend nodes and low power nodes
Low Power Node

(sensor)
Friend

Low power nodes (LPNs) are highly power

constrained

To avoid the need to operate at a high(er)

duty cycle to receive messages from the

mesh, an LPN works with a Friend

Friend nodes store messages addressed to

LPNs they are friends with and forward

them when the LPN occasionally polls

friend nodes and low power nodes
Low Power Node

(sensor)
Friend

To: Sensor

“set temperature thresholds”

Low power nodes (LPNs) are highly power

constrained

To avoid the need to operate at a high(er)

duty cycle to receive messages from the

mesh, an LPN works with a Friend

Friend nodes store messages addressed to

LPNs they are friends with and forward

them when the LPN occasionally polls

friend nodes and low power nodes

STORED

MESSAGE(S)

Low Power Node

(sensor)
Friend

To: Sensor

“set temperature thresholds”

Low power nodes (LPNs) are highly power

constrained

To avoid the need to operate at a high(er)

duty cycle to receive messages from the

mesh, an LPN works with a Friend

Friend nodes store messages addressed to

LPNs they are friends with and forward

them when the LPN occasionally polls

friend nodes and low power nodes

STORED

MESSAGE(S)

“do you have any

messages for me?”

Low Power Node

(sensor)
Friend

To: Sensor

“set temperature thresholds”

Low power nodes (LPNs) are highly power

constrained

To avoid the need to operate at a high(er)

duty cycle to receive messages from the

mesh, an LPN works with a Friend

Friend nodes store messages addressed to

LPNs they are friends with and forward

them when the LPN occasionally polls

friend nodes and low power nodes

STORED

MESSAGE(S)

“do you have any

messages for me?”

Low Power Node

(sensor)
Friend

To: Sensor

“set temperature thresholds”

To: Sensor

“set temperature thresholds”

Low power nodes (LPNs) are highly power

constrained

To avoid the need to operate at a high(er)

duty cycle to receive messages from the

mesh, an LPN works with a Friend

Friend nodes store messages addressed to

LPNs they are friends with and forward

them when the LPN occasionally polls

proxy nodes

P

Bluetooth low energy devices like

smartphones can communicate with a mesh

network via a proxy node

LE GATT

MESH

proxy nodes

P

Bluetooth low energy devices like

smartphones can communicate with a mesh

network via a proxy node

mesh monitoring and control applications

LE GATT

MESH

Bluetooth Mesh

Communication and
Interaction

messages and state

State: OnOff = Off

State: OnOff = Off State: OnOff = Off
nodes communicate with each other by

sending messages

access messages operate on state values

SET - change of state

GET - retrieve state value

STATUS - notify current state

ACK vs UNACK

nodes have state values which reflect

their condition (e.g. ON or OFF)

messages and state

State: OnOff = Off

State: OnOff = Off State: OnOff = OffState: OnOff = On

State: OnOff = On

State: OnOff = On
nodes communicate with each other by

sending messages

access messages operate on state values

SET - change of state

GET - retrieve state value

STATUS - notify current state

ACK vs UNACK

nodes have state values which reflect

their condition (e.g. ON or OFF)

the publish/subscribe communication model

Kitchen Dining Room Hallway Bedroom Garden

Subscribe

Publish

Bluetooth Mesh

Node Composition

node composition

a node consists of an arrangement of

elements

models

states

each element has its own address

NODE

ELEMENT ELEMENT

MODEL

STATE

STATE

STATE

MODEL

STATE

MODEL

STATE

STATE

MODEL

STATE

note: a model is sometimes owned by multiple elements

models

ServerGeneric OnOff

Server

Generic OnOff

Client

define node functionality

define states, messages, state transitions

and behaviors

client, server and control types

generics such as onoff client and server

lighting, sensors, scenes & time

node composition

single node

3 elements

multiple models and states

0x0100 0x0101 0x0102

node

elements

models

states

generic onoff server

light lightness server

light lightness actual

light lightness last

light lightness range

generic onoff

Bluetooth Mesh

Demonstration

Bluetooth Mesh

Zephyr Code

Node Composition

// 1. Models Supported

static struct bt_mesh_model sig_models[] = {

BT_MESH_MODEL_CFG_SRV(&cfg_srv),

BT_MESH_MODEL_HEALTH_SRV(&health_srv, &health_pub),

BT_MESH_MODEL(BT_MESH_MODEL_ID_GEN_ONOFF_SRV, generic_onoff_op, &generic_onoff_pub,NULL),

BT_MESH_MODEL(BT_MESH_MODEL_ID_GEN_LEVEL_SRV, generic_level_op, &generic_level_pub,NULL)};

// 2. The models each element contains

static struct bt_mesh_elem elements[] = {

BT_MESH_ELEM(0, sig_models, BT_MESH_MODEL_NONE),

};

// 3. The elements in this node (one only here)

static const struct bt_mesh_comp comp = {

.elem = elements,

.elem_count = ARRAY_SIZE(elements),

};

Models and Message Handlers

// 4. 16-bit message opcodes

#define BT_MESH_MODEL_OP_GENERIC_ONOFF_GET BT_MESH_MODEL_OP_2(0x82, 0x01)

#define BT_MESH_MODEL_OP_GENERIC_ONOFF_SET BT_MESH_MODEL_OP_2(0x82, 0x02)

#define BT_MESH_MODEL_OP_GENERIC_ONOFF_SET_UNACK BT_MESH_MODEL_OP_2(0x82, 0x03)

#define BT_MESH_MODEL_OP_GENERIC_ONOFF_STATUS BT_MESH_MODEL_OP_2(0x82, 0x04)

// 5. mapping message opcodes to RX message handler functions

static const struct bt_mesh_model_op generic_onoff_op[] = {

{BT_MESH_MODEL_OP_GENERIC_ONOFF_GET, 0, generic_onoff_get},

{BT_MESH_MODEL_OP_GENERIC_ONOFF_SET, 2, generic_onoff_set},

{BT_MESH_MODEL_OP_GENERIC_ONOFF_SET_UNACK, 2, generic_onoff_set_unack},

BT_MESH_MODEL_OP_END,

};

RX Message Handling

// 6. RX message handler for generic onoff set unacknowledged

static void generic_onoff_set_unack(struct bt_mesh_model *model,

struct bt_mesh_msg_ctx *ctx,

struct net_buf_simple *buf) {

// message payload is in a network buffer

u8_t buflen = buf->len;

// unpack using Zephyr network buffer API

target_onoff_state = net_buf_simple_pull_u8(buf);

u8_t tid = net_buf_simple_pull_u8(buf);

transition_time = 0;

// extract optional message parameters

if (buflen > 4){

transition_time = net_buf_simple_pull_u8(buf);

delay = net_buf_simple_pull_u8(buf);

}

// process the transition

k_work_submit(&onoff_set_work);

}

TX Message Sending

// 7. generic onoff status TX message producer

void generic_onoff_status(u8_t present_on_or_off, u16_t dest_addr, u8_t

transitioning, u8_t target_on_or_off, u8_t remaining_time){

// create a network buffer for the message

// 2 bytes for the opcode, 1 byte present onoff value

// 2 optional bytes for target onoff and remaining time

// 4 additional bytes for the TransMIC

u8_t buflen = 7;

if (transitioning == 1) {

buflen = 9;

}

NET_BUF_SIMPLE_DEFINE(msg, buflen);

TX Message Sending

// 7. generic onoff status TX message producer (cont)

// create a message context (select keys, set dest addr, set TTL)

struct bt_mesh_msg_ctx ctx = {

.net_idx = net_idx,

.app_idx = app_idx,

.addr = dest_addr,

.send_ttl = BT_MESH_TTL_DEFAULT };

// initialise message buffer with opcode

bt_mesh_model_msg_init(&msg, BT_MESH_MODEL_OP_GENERIC_ONOFF_STATUS);

// populate message with fields

net_buf_simple_add_u8(&msg, present_on_or_off);

if (transitioning == 1) {

net_buf_simple_add_u8(&msg, target_on_or_off);

net_buf_simple_add_u8(&msg, remaining_time);

}

TX Message Sending

// 7. generic onoff status TX message producer (cont)

// send the message

if (bt_mesh_model_send(&sig_models[3], &ctx, &msg, NULL, NULL)){

printk("Unable to send generic onoff status message\n");

}

// job done!

printk("onoff status message %d sent\n", present_on_or_off);

}

Bluetooth Mesh

Security

devices and network membership

Provisioner: converting

a device to a node

Device is now a

node on the network

only members of the same network can

talk to each other

Bluetooth mesh networks are secure

a security process called provisioning

makes a device a member of a network

Bluetooth mesh: Security

• Mandatory

• Encryption and authentication

• Separate security for network and each application

• Area isolation

• Message obfuscation

• Protection from replay and trashcan attacks

• Secure device provisioning

network key (netkey)

origin: provisioning

use: derivation of other keys

encryption key

origin: derived from netkey

using the k2 function

use: secures data

at the network

layer

privacy key

origin: derived from

netkey

using the k2 function

use: obfuscation

of network header

information

ref: mesh profile 1.0 section 2.3.9.1

application key

(appkey)

origin: created by

the config. client

and provided to nodes

after provisioning

use: secures

application data

at the upper transport

layer

Bound to one or more

models.

device key (devkey)

origin: established

during provisioning

use: secures communication

between the config. client

and individual node

appkey is bound to a netkey

devkey is bound to all

netkeys known to a node

Bluetooth Mesh

Where next?

Bluetooth SIG Resources - Reading Material

Bluetooth SIG Resources - hands-on education

Bluetooth Mesh Developer Study

Guide

Mesh Proxy Kit

Unthinkably ConnectedUnthinkably Connected
26 October 2018 38/ Bluetooth SIG Proprietary

Twitter: @bluetooth_mdw

questions?

kevin.ke@oneplus.net.

mailto:kevin.ke@oneplus.net

