DRONE SITL BRINGUP WITH THE 110 FRAMEWORK

Bandan Das <bsd@redhat.com>
Open Source Summit, Europe, 2018

WHAT'S THIS ABOUT ?

e My experiments with bringing up sensors on a x86 board
e Understanding the IO framework
= |nterfacing the framework with SITL code to verify sensors are working

N

WHAT ISN'T THIS ABOUT ?

e Flying
e Drones, | am a newbie!

ACKNOWLEDGEMENTS

e Real Time systems group at BU
e https://www.cs.bu.edu/~richwest/index2.html

* Microkernels, Cache scheduling algorithms, Virtualization, Predictable
time

https://www.cs.bu.edu/~richwest/index2.html

STATE OF THE ART

HARDWARE

Image © PX4 Dev Team. License: CC BY 4.0

e Most drone boards belong to the STM32 family
e Becoming faster/powerful everyday!
e Low power requirements

.2

SOFTWARE

e Ardupilot, Betaflight, iNav, Cleanflight

5.

3

WHY X86 7

Increasingly complex tasks and onboard peripherals
Processing power

The case for reactive drones

Low power x86 boards are a reality although not common

N

WHY LINUX ?

e Robust operating system
e Drivers for awide variety of sensors/peripherals
e Choice of schedulers

N

A LOOK AT THE INTEL AERO COMPUTE BOARD

TET

SPI 3
SPI 1/C51

GPIO

Aero

HSUART/Telemetry

Flight Controller

Aero as a Companion Computer

N

HOWEVER...

e The Aerois a powerful computer
e Onboard sensors to run standalone as a flight controller
e Access to GPIO pins/motor outputs through onboard FPGA

N

MOVING FC OPERATIONS TO A X86 BOARD

e Reinventing the wheel
= Customized Linux that jumps to a flight controller loop with specific
tasks
e Leverage on existing solutions
= Run an existing flight controller software as a process

INTERFACING WITH THE ONBOARD SENSORS

e spidev/i2cdev - userspace drivers
e Linux already has drivers for most sensors
= exposed by the Industrial 1O interface (110)
e Advantages
= Minimizes latency
e Disadvantages
= Crashes can be deadly

AN INTRODUCTION TO THE 110 INTERFAGE

e Industrial Input/Output

= Examples include Humidity Sensors, Temperature sensors,
Magenetometer etc

m v4.18: ~20 classes, each containing numerous device drivers
= Most devices connected via |12C or SPI

e ||O provides a hardware abstraction layer over these devices
= Sharing of infrastructure

= Developer focus on device function rather than knowledge of plumbing
TEEIS

= Consistent application development framework
= Data buffer for continuous data and single shot access via sysfs

(2

1

GETTING STARTED WITH 10

e Devicedrivers

m BMI 160 Inertial Measurement Unit

ls drivers/iio/imu/bmil60/
bmil60® core.c bmil60 i2c.c bmil60O spi.c

= BMM 150 3 axis Geomagnetic Sensor

ls drivers/iio/magnetometer/
bmc1l50 magn.c bmcl50 magn i2c.c bmcl50 magn spi.c

m MS5611 Pressure Sensor

ls drivers/iio/pressure/
ms5611 core.c ms5611 spi.c ms5611 i2c.c

13.

1

GETTING STARTED WITH 10

e Key components
= Devicedrivers
= Channels
m Buffers
m Triggers

GETTING STARTED WITH 10

e Channels - One of the many functions provided by the device

= BMI160

cat /sys/bus/iio/devices/iio\:device0/name
bmil60

ls /sys/bus/iio/devices/iio\:device0/

in accel x raw in accel y raw in accel z raw

= BMM150

cat /sys/bus/iio/devices/iio\:devicel/name
bmc1l50 magn

ls /sys/bus/iio/devices/iio\:devicel

in magn X raw 1n magn Yy raw in magn z raw

15.

1

GETTING STARTED WITH 10

o Buffers

Raw continuous data read from the device
Specific channels can be enabled

Data format specified by channels

o Example:

cat /sys/bus/iio/devices/iio\:devicel/scan elements/in magn x type
le:s32/32>>0

Kfifo backed

Read using standard fileops by accessing /dev/iio:deviceX

mmap based interface supported by a DMA backend (high speed
devices)

16.

1

GETTING STARTED WITH 10

e Triggers
= Capture data only when needed
o Based on a hardware event
o User initiated (eg: via sysfs)
o Software trigger (eg: hrtimer based)
o Enabling trigger enables data capture

GETTING STARTED WITH 10

e |nitializing SPI/12C devices
= Not enumerated at the hardware level
= SP| (BMI160)
o Device tree
o ACPI
o Board initialization file

o Example:

static struct spi board info imu board info initdata ={
.modalias= "bmil60",

.bus _num= SPIDEV SPI BUS,

.chip select= SPIDEV SPI CS,

.max_speed hz= SPIDEV SPI HZ,

b

master = spi busnum to master(SPIDEV SPI BUS);

dev = spi new device(master, &imu board info);

18.

1

GETTING STARTED WITH 10

e Initializing SPI/12C devices
= |2C (BMM150)

o Device tree

o Board initialization file
o sysfsinterface

o Example:

echo bmcl50 magn 0x12 > /sys/bus/i2c/devices/i2c-2/new device

CREATING A TRIGGER

mkdir /sys/kernel/config/iio/triggers/hrtimer/triggero

echo 5000 > /sys/bus/iio/devices/trigger0/sampling frequency

cd /sys/bus/iio/devices/iio:device@ #Associate trigger with BMI160
echo trigger® > trigger/current trigger

echo 1 > scan elements/in accel x raw

echo 1 > buffer/enable

20.

SHIM LAYER: LIBIIO

libiio: Building blocks

e Library that interfaces with the 11O API
e Ease of developer interacting with the 11O framework

SIMULATION FRAMEWORKS (SITL/HITL)

e SITL
= Modified flight controller software running in a simulator environment
= Control signals come from software or a controller
= Simulator feeds sensor data back to firmware feedback loop
= Actuator outputs fed to simulator
e HITL
= Flight controller software runs on the actual board
= Sensor data and outputs fed to a simulator
= Enables testing in closer to real-world conditions

22.

SITL SETUP IN BETAFLIGHT

Actuator/Motors

UDP/9002

Sensors
UDP/9003

Betaflight Simulator

TCP/5760

Cleanflight Configurator)

Basic SITL setup in Betaflight/Cleanflight

23 .1

typedef struct {

double
double
double
double
double
double
} fdm packet;

SENSOR DATA FORMAT

imu angular velocity rpyl[3];
imu linear acceleration xyz[3];
imu orientation quat[4];
velocity xyz[3];

position xyz[3];

24 .

PLUGGING IN 110 DATA IN THE SITL LOOP

Actuator/Motors

UDP/9002

Sensors
UDP/9003

Betaflight Simulator

TCP/5760

1O Data

Cleanflight Configurator)

25.

1

PLUGGING IN [10 DATA IN THE SITL LOOP

e Visual indication of correct functioning of sensors
e Sensors output in a more readable format or graph (eg. Cleanflight
Configurator)

BETAFLIGHT TASKS

/* TASK_COUNT = ~30 */
cfTask t cfTasks[TASK COUNT] = {

[TASK GYROPID] = {
.taskName = "PID",
.subTaskName = "GYRO",
.taskFunc = taskMainPidLoop,

.desiredPeriod = TASK GYROPID DESIRED PERIOD,

.StaticPriority = TASK PRIORITY REALTIME,

¥,
[TASK ACCEL] = {
.taskName = "ACC",
.taskFunc = taskUpdateAccelerometer,
.desiredPeriod = TASK PERIOD HZ(1000),
.staticPriority = TASK PRIORITY MEDIUM,
¥

[TASK ATTITUDE] = {
.taskName = "ATTITUDE",
.taskFunc = imuUpdateAttitude,
.desiredPeriod = TASK PERIOD HZ(100),
.staticPriority = TASK PRIORITY MEDIUM,

I

#ifdef USE MAG

[TASK COMPASS] = {
.taskName = "COMPASS",
.taskFunc = compassUpdate,
.desiredPeriod = TASK PERIOD HZ(10),
.StaticPriority = TASK PRIORITY LOW,

}
#endif

// 1000Hz, every 1ms

// Compass 1s updated at 10 Hz

27 .

IMU LOOP COUNT

IMU loop count Time in read function

lio_read ——

'I|'| T P (T T R RRELE R JE p
LAINLT Y f.,ﬂra,l,- A LA

=
—

Q

E
|_

0 102030405060 70809000 0 102030405060 708090100

Mumber of samples Mumber of samples

e Standard upstream kernel
e No specialized config

28.

1

IMU LOOP COUNT

IMU loop count Time in read function

lio_read ——

A Aodhd A Mufla A
it iR A

=
—

Q

E
|_

0 102030405060 70809000 0 102030405060 708090100

Mumber of samples Mumber of samples

e Standard upstream kernel
e jsolcpus=2-3
e irg thread on CPU 2 and read process on CPU 3

REFERENCES

o https://bitbucket.org/bdas/iio_sensors (Code snippets for the SITL/IIO

interface)
o https://lwn.net/Articles/370423/ (Secrets of the Ftrace function tracer)
o https://github.com/betaflight/betaflight (Betaflight source)

e https://archive.fosdem.org/2012/schedule/event/693/127 iio-a-new-
subsystem.pdf

(110, a new kernel subsystem)
e https://github.com/analogdevicesinc/libiio (Library for interfacing with 11O

devices)
o https://www.youtube.com/watch?v=ealH3qP_pBE (APM on Linux: Porting

Ardupilot to Linux1)
e https://archive.fosdem.org/2015/schedule/event/iiosdr/ (Using the Linux

|O framework for SDR)
o https://www.cs.bu.edu/~richwest/index2.html (Rich West's Home page)
o https://github.com/intel-aero/meta-intel-aero/wiki (Intel Aero Wiki)

30.1

https://bitbucket.org/bdas/iio_sensors
https://lwn.net/Articles/370423/
https://github.com/betaflight/betaflight
https://archive.fosdem.org/2012/schedule/event/693/127_iio-a-new-subsystem.pdf
https://github.com/analogdevicesinc/libiio
https://www.youtube.com/watch?v=ealH3qP_pBE
https://archive.fosdem.org/2015/schedule/event/iiosdr/
https://www.cs.bu.edu/~richwest/index2.html
https://github.com/intel-aero/meta-intel-aero/wiki

WRAP UP NOTES

Running a flight controller software as a process
nterfacing with IlO appears to be straightforward
-urther investigation on latency and performance

Running a PREEMPT _RT kernel
More experiments with affinities

31.

