
1 . 1

DRONE SITL BRINGUP WITH THE IIO FRAMEWORK
Bandan Das <bsd@redhat.com>

Open Source Summit, Europe, 2018



2 . 1

WHAT'S THIS ABOUT ?
My experiments with bringing up sensors on a x86 board
Understanding the IIO framework

Interfacing the framework with SITL code to verify sensors are working



3 . 1

WHAT ISN'T THIS ABOUT ?
Flying
Drones, I am a newbie!



4 . 1

ACKNOWLEDGEMENTS
Real Time systems group at BU

Microkernels, Cache scheduling algorithms, Virtualization, Predictable
time

https://www.cs.bu.edu/~richwest/index2.html

https://www.cs.bu.edu/~richwest/index2.html


5 . 1

STATE OF THE ART



5 . 2

HARDWARE

Image © PX4 Dev Team. License: CC BY 4.0

Most drone boards belong to the STM32 family
Becoming faster/powerful everyday!
Low power requirements



5 . 3

SOFTWARE
Ardupilot, Beta�ight, iNav, Clean�ight



6 . 1

WHY X86 ?
Increasingly complex tasks and onboard peripherals
Processing power
The case for reactive drones
Low power x86 boards are a reality although not common



7 . 1

WHY LINUX ?
Robust operating system
Drivers for a wide variety of sensors/peripherals
Choice of schedulers



8 . 1

A LOOK AT THE INTEL AERO COMPUTE BOARD

Aero as a Companion Computer



9 . 1

HOWEVER…
The Aero is a powerful computer
Onboard sensors to run standalone as a �ight controller
Access to GPIO pins/motor outputs through onboard FPGA



10 . 1

MOVING FC OPERATIONS TO A X86 BOARD
Reinventing the wheel

Customized Linux that jumps to a �ight controller loop with speci�c
tasks

Leverage on existing solutions
Run an existing �ight controller software as a process



11 . 1

INTERFACING WITH THE ONBOARD SENSORS
spidev/i2cdev - userspace drivers
Linux already has drivers for most sensors

exposed by the Industrial IO interface (IIO)
Advantages

Minimizes latency
Disadvantages

Crashes can be deadly



12 . 1

AN INTRODUCTION TO THE IIO INTERFACE
Industrial Input/Output

Examples include Humidity Sensors, Temperature sensors,
Magenetometer etc
v4.18: ~20 classes, each containing numerous device drivers
Most devices connected via I2C or SPI

IIO provides a hardware abstraction layer over these devices
Sharing of infrastructure
Developer focus on device function rather than knowledge of plumbing
internals
Consistent application development framework
Data buffer for continuous data and single shot access via sysfs



13 . 1

GETTING STARTED WITH IIO
Device drivers

BMI 160 Inertial Measurement Unit

BMM 150 3 axis Geomagnetic Sensor

MS5611 Pressure Sensor

ls drivers/iio/imu/bmi160/ 
bmi160_core.c bmi160_i2c.c bmi160_spi.c 

ls drivers/iio/magnetometer/ 
bmc150_magn.c bmc150_magn_i2c.c bmc150_magn_spi.c 

ls drivers/iio/pressure/ 
ms5611_core.c ms5611_spi.c ms5611_i2c.c 



14 . 1

GETTING STARTED WITH IIO
Key components

Device drivers
Channels
Buffers
Triggers



15 . 1

GETTING STARTED WITH IIO
Channels - One of the many functions provided by the device

BMI160

BMM150

cat /sys/bus/iio/devices/iio\:device0/name 
bmi160 
ls /sys/bus/iio/devices/iio\:device0/      
in_accel_x_raw in_accel_y_raw in_accel_z_raw 

cat /sys/bus/iio/devices/iio\:device1/name 
bmc150_magn 
ls /sys/bus/iio/devices/iio\:device1 
in_magn_x_raw in_magn_y_raw in_magn_z_raw 



16 . 1

GETTING STARTED WITH IIO
Buffers

Raw continuous data read from the device
Speci�c channels can be enabled

Data format speci�ed by channels

Example:

K�fo backed
Read using standard �leops by accessing /dev/iio:deviceX
mmap based interface supported by a DMA backend (high speed
devices)

cat /sys/bus/iio/devices/iio\:device1/scan_elements/in_magn_x_type 
le:s32/32>>0 



17 . 1

GETTING STARTED WITH IIO
Triggers

Capture data only when needed
Based on a hardware event
User initiated (eg: via sysfs)
Software trigger (eg: hrtimer based)
Enabling trigger enables data capture



18 . 1

GETTING STARTED WITH IIO
Initializing SPI/I2C devices

Not enumerated at the hardware level
SPI (BMI160)

Device tree
ACPI
Board initialization �le

Example:
static struct spi_board_info imu_board_info __initdata ={ 
.modalias= "bmi160", 
.bus_num= SPIDEV_SPI_BUS, 
.chip_select= SPIDEV_SPI_CS, 
.max_speed_hz= SPIDEV_SPI_HZ, 
}; 
... 
master = spi_busnum_to_master(SPIDEV_SPI_BUS); 
... 
dev = spi_new_device(master, &imu_board_info); 
... 



19 . 1

GETTING STARTED WITH IIO
Initializing SPI/I2C devices

I2C (BMM150)

Device tree
Board initialization �le
sysfs interface
Example:
echo bmc150_magn 0x12 > /sys/bus/i2c/devices/i2c-2/new_device 



20 . 1

CREATING A TRIGGER
mkdir /sys/kernel/config/iio/triggers/hrtimer/trigger0 
echo 5000 > /sys/bus/iio/devices/trigger0/sampling_frequency 
cd /sys/bus/iio/devices/iio:device0 #Associate trigger with BMI160 
echo trigger0 > trigger/current_trigger 
echo 1 > scan_elements/in_accel_x_raw 
echo 1 > buffer/enable 



21 . 1

SHIM LAYER: LIBIIO

libiio: Building blocks

Library that interfaces with the IIO API
Ease of developer interacting with the IIO framework



22 . 1

SIMULATION FRAMEWORKS (SITL/HITL)
SITL

Modi�ed �ight controller software running in a simulator environment
Control signals come from software or a controller
Simulator feeds sensor data back to �rmware feedback loop
Actuator outputs fed to simulator

HITL
Flight controller software runs on the actual board
Sensor data and outputs fed to a simulator
Enables testing in closer to real-world conditions



23 . 1

SITL SETUP IN BETAFLIGHT

Basic SITL setup in Beta�ight/Clean�ight



24 . 1

SENSOR DATA FORMAT
 typedef struct { 
 double timestamp; 
 double imu_angular_velocity_rpy[3]; 
 double imu_linear_acceleration_xyz[3]; 
 double imu_orientation_quat[4]; 
 double velocity_xyz[3]; 
 double position_xyz[3]; 
} fdm_packet; 



25 . 1

PLUGGING IN IIO DATA IN THE SITL LOOP



26 . 1

PLUGGING IN IIO DATA IN THE SITL LOOP
Visual indication of correct functioning of sensors
Sensors output in a more readable format or graph (eg. Clean�ight
Con�gurator)



27 . 1

BETAFLIGHT TASKS
/* TASK_COUNT = ~30 */ 
cfTask_t cfTasks[TASK_COUNT] = { 
... 
   [TASK_GYROPID] = { 
       .taskName = "PID", 
       .subTaskName = "GYRO", 
       .taskFunc = taskMainPidLoop, 
       .desiredPeriod = TASK_GYROPID_DESIRED_PERIOD, 
       .staticPriority = TASK_PRIORITY_REALTIME, 
   }, 
   [TASK_ACCEL] = { 
       .taskName = "ACC", 
       .taskFunc = taskUpdateAccelerometer, 
       .desiredPeriod = TASK_PERIOD_HZ(1000),      // 1000Hz, every 1ms 
       .staticPriority = TASK_PRIORITY_MEDIUM, 
   }, 
   [TASK_ATTITUDE] = { 
       .taskName = "ATTITUDE", 
       .taskFunc = imuUpdateAttitude, 
       .desiredPeriod = TASK_PERIOD_HZ(100), 
       .staticPriority = TASK_PRIORITY_MEDIUM, 
   }, 
   ... 
   #ifdef USE_MAG 
   [TASK_COMPASS] = { 
       .taskName = "COMPASS", 
       .taskFunc = compassUpdate, 
       .desiredPeriod = TASK_PERIOD_HZ(10),        // Compass is updated at 10 Hz 
       .staticPriority = TASK_PRIORITY_LOW, 
   }, 
   #endif 
   ... 



   ... 
   }; 

28 . 1

IMU LOOP COUNT

Standard upstream kernel
No specialized con�g



29 . 1

IMU LOOP COUNT

Standard upstream kernel
isolcpus=2-3
irq thread on CPU 2 and read process on CPU 3



30 . 1

REFERENCES
 (Code snippets for the SITL/IIO

interface)
 (Secrets of the Ftrace function tracer)

 (Beta�ight source)

(IIO, a new kernel subsystem)
 (Library for interfacing with IIO

devices)
 (APM on Linux: Porting

Ardupilot to Linux1)
 (Using the Linux

IIO framework for SDR)
 (Rich West's Home page)

 (Intel Aero Wiki)

https://bitbucket.org/bdas/iio_sensors

https://lwn.net/Articles/370423/
https://github.com/beta�ight/beta�ight
https://archive.fosdem.org/2012/schedule/event/693/127_iio-a-new-
subsystem.pdf

https://github.com/analogdevicesinc/libiio

https://www.youtube.com/watch?v=ealH3qP_pBE

https://archive.fosdem.org/2015/schedule/event/iiosdr/

https://www.cs.bu.edu/~richwest/index2.html
https://github.com/intel-aero/meta-intel-aero/wiki

https://bitbucket.org/bdas/iio_sensors
https://lwn.net/Articles/370423/
https://github.com/betaflight/betaflight
https://archive.fosdem.org/2012/schedule/event/693/127_iio-a-new-subsystem.pdf
https://github.com/analogdevicesinc/libiio
https://www.youtube.com/watch?v=ealH3qP_pBE
https://archive.fosdem.org/2015/schedule/event/iiosdr/
https://www.cs.bu.edu/~richwest/index2.html
https://github.com/intel-aero/meta-intel-aero/wiki


31 . 1

WRAP UP NOTES
Running a �ight controller software as a process
Interfacing with IIO appears to be straightforward
Further investigation on latency and performance
Running a PREEMPT_RT kernel
More experiments with af�nities


