

Automating Your Network Starts with A Continuous Deployment Pipeline

Wenjing Chu
Futurewei Technologies, Inc.
@wenjing

Junaid Ali Waterford Institute of Technology

An Analogy

Automating a complex interconnected network bears some similarity to colonizing Mars, you begin first with a delivery vehicle that you can Launch, Land, Repeat reliably and cheaply.

Payload: containerized software package.

Fuel: the non-reusable cost of each deployment.

Vehicle: the Continuous Deployment system.

"The Falcon 9 explained using the 1000 words people use most regularly" Image credit: https://imgur.com/nCqs3EQ

The Comparison between CI and CD

- CI focuses primarily on automating the development process
- It manages code, test cases, bugs etc.
- At the end of CI pipeline, you get a package ready for deployment (Delivery)

- CD focuses primarily on automating the operation process of maintaining services
- It manages services, resources, upgrades, data etc.
- CI and CD are closely related

Continuous Deployment is a Strategic Capability

- CD is the modern link between a Service Provider's services, operational processes, and resources (networks), with Vendors' software products (outputs of CIs).
- As the rocket analogy suggests, it is a lever that can result in sustained competitive advantage.

A Few Quick Words about Clover

- Clover is a Cloud Native for Networking open source project
 - under Linux Foundation Networking's OPNFV
- Clover focuses on software stack that help Networking to adopt Micro-services via Service Mesh, achieve Visibility, Operability, and Continuous Deployment
- For further interests:
 - Wiki: https://wiki.opnfv.org/display/CLOV
 - Slack: #clover-project, or follow the join link in the above wiki page.

Core Capabilities to Look For in a CD tool

- Take Deployment as the first priority
- Focus squarely on Services, and Frequent Updates as Normal Operations
- Support Multi-Cloud as a principle
- Can easily integrate into the rest of your operation process
- Support best practices such as A/B, Green/Blue, Canary, by default
- Reproducibility: Pipeline as code
- In Clover, we have adopted Spinnaker for helping implement CD

The CD Pipeline is Much More than a Toolchain

- The software needs be architected with Cloud Native methodology (See also ONS EU Tutorial on Tuesday morning)
- Automated test tools can sufficiently validate a live system
- Real time data points can be collected, analyzed, to reach statistically valid conclusions
- Software and services are designed in a way that if we make a mistake, damage is controlled and can be reversed automatically
- ... you see the point

... But if We Do Accomplish the Feat,

We get Zero Touch, the real deal.

Or

Low Touch, and a known path to reduce the degree of Touch further and further iteratively.

Some Experiences from Communities

OPNFV

- Initially, CI has long time lag, deploy (by installers) is day-1 only and very complicated and slow
- XCI (cross project CI) helps to address the source lag problem
- Clover-CD, together with CNWG, is to help address the deployment problem
- Many testing projects can be containerized and used for automated validation in the CD pipeline.

ONAP

- ONAP has a large number of containers covering orchestration and management.
- Targets Kubernetes and packaged with Helm charts
- CD is a great fit for ONAP
 - Easier system test
 - Upgradability of individual parts
 - Multi-cloud, multi-provider
 - Focus on operation and zero touch
- Had several discussions we hope to report more in the future.

A Demo to Walk Through the Concepts

- We will use an example originated from Kubernetes and adopted by the Clover project for training purposes.
- Clover uses Spinnaker as part of the toolchain to implement CD, and that's what we will show in the demo.

Agents and Resources

Spinnaker

Kubernetes

DockerHub

Kubernetes

- A GKE cluster provided by Linux Foundation
- 1.10.6

Spinnaker

- A high level continuously delivery and release platform
- Deployed via Halyard
- 1.8.6

Key Takeaways

- If you are a service provider
 - Start thinking about Continuous Deployment at the beginning goal setting stage of your network automation initiative
- If you are vendors/developers
 - Think about Continuous Deployment at product definition stage (i.e. with Customers and Product Owners), before designing software
- Find more at Clover: https://wiki.opnfv.org/display/CLOV

Questions?

- Junaid's work is supported by an Linux Foundation Networking internship in the OPNFV Clover project.
- Clover: https://wiki.opnfv.org/display/CLOV