# ACRN

**ACRN™: A Big Little Hypervisor for IoT Development** 

V0.2 Status Update

Eddie Dong, Intel Open Source Technology Center

Key contributors: Christopher Cormack, Matthew Curfman, Jeff Jackson

#### **Table of Contents**

| PART 1: What is ACRN           | page 3  |
|--------------------------------|---------|
| PART 2: Architecture Models    | page 5  |
| PART 3: Development Status     | page 10 |
| PART 4: Call for Participation | page 17 |



#### What is ACRN

ACRN is a Big Little Hypervisor for IoT Development!

## **Usage Difference: From Server to IoT**



|                              | Server Usage                                                     | IoT Usage              |
|------------------------------|------------------------------------------------------------------|------------------------|
| Open/Close Platform          | Open                                                             | Mostly Closed          |
| System Software Distribution | One binary for a variety of product, and/or with add-on hardware | Customized per product |
| Real Time                    | No                                                               | Yes for many systems   |
| Functional Safety            | No                                                               | Yes for some usages    |
| Video (including Camera)     | No                                                               | Yes for many usages    |
| Audio                        | No                                                               | Yes for many usages    |
| Performance                  | Yes                                                              | Yes                    |
| Isolation                    | Yes                                                              | Yes                    |
| Security                     | Yes                                                              | Yes                    |
| Migration                    | Very Important                                                   | Yes for some usages    |

IoT Virtualization would be largely different with that of Server virtualization

#### **ACRN Focus**





**Small Footprint** 



**Built for IoT** 



Adaptability



Built for Real-Time



**Safety Criticality** 



Truly Open Source

#### **Sharing Mode & Partition Mode**







**Sharing Mode** 

**SOS-Less Partition Mode** 

#### **Hybrid Mode**







Privileged VM, loaded by Hypervisor Completely independent of SOS

Privileged VM, loaded by SOS
But independent of SOS at Runtime

## **ACRN Sharing Mode for IVI Usage**





#### **ACRN Partition Mode for Industrial Usage**





RT VM uses dedicated hardware resources (CPU/Memory/Devices)

- LAPIC Passthru for exit-less MSI interrupt / Timer
- IOAPIC partition with global vectoring
- Cache Partitioning

Minimal in-hypervisor devices

- Virtual RTC
- Virtual PCI controller and host bridge

GUI VM can be extended as SOS to support more VMs

Hybrid model

## **Hypervisors Feature Comparison**



| Features                  | ACRN          | KVM           | XEN                  |
|---------------------------|---------------|---------------|----------------------|
| Hypervisor                | Type 1        | Type 2        | Type 1               |
| Lines of Code (LOC)       | 28K           | 10M+          | ~299K                |
| Functional Safety Capable | Yes (**)      | No            | No                   |
| MISRA                     | Yes           | No            | No                   |
| USB                       | Host + Device | Host only     | Host only            |
| Device sharing            | Yes           | Yes           | Yes                  |
| Virtio                    | Yes           | Yes           | No (Xen specific PV) |
| Vhost                     | WIP           | Yes           | No                   |
| VM management             | Yes           | Yes (libvirt) | Yes (libvirt)        |
| Nested virtualization     | No            | Yes           | Yes                  |
| VM migrations             | No            | Yes           | Yes                  |
| CPU hotplug               | No            | Yes           | Yes                  |



\*\*\*Lines of source code is collected by running cloc to parse the hypervisor directory ACRN: As of Sep 25 (open source V0.2 Release)

XEN: As of Oct 10 (commit: 92666fdd6e0afab989b2d89759d9b43f2c645ae7)

#### **ACRN Lines of Code**



#### **ACRN Source Code Size**



#### **Towards MISRA-C Compliance**





- Statistics from commercial safety-qualified checker.
- False positives and intended deviations tracked in weekly-updated sheets.
- Pull requests are scanned hunting for new violations.

#### **Preliminary GPU Performance on Apollo Lake**





| Performance Test Cases in Android   | Native | Guest | Guest VS Native |
|-------------------------------------|--------|-------|-----------------|
| Carchase offscreen                  | 12.63  |       | 79.18%          |
| Manhattan 3.1 offscreen             | 20.73  | _     | 82.01%          |
|                                     |        |       |                 |
| H.264_MPEG4_AVC_1080p60             |        |       | 92.33%          |
| H.265_HEVC_4kx2kp60_10bits_playback | 59.99  | 53.1  | 88.51%          |

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.

#### **Configuration for Real Time Latency**



#### Common

- Dell-7050 (i7-7700), 3.6GHZ, 8MB Cache
- ACRN with hybrid mode
- Service VM uses Clearlinux, running SCP

#### Configuration 1

- RT-VM runs tickles Zephyr with 64KB memory
- Cyclic Test to measure the scheduler jitter & OS Tick latency

#### Configuration 2

- RT-Linux (4.14) with 1GB memory
- Cyclic Test to measure the scheduler jitter between native and VM

#### **Preliminary Jitter with Zephyr**











Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.

#### **Preliminary Jitter with RT-Linux**





Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.

## **ACRN** Roadmap



|                       | Dates below are for referer | nce only and subject to chang                                                                    | e                                    |                     |                             |
|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-----------------------------|
| Area                  | v0.1@Q2'18                  | v0.2@Q3'18                                                                                       | V0.5@Q4'18                           | V1.0@Q1'19          | V1.x@2019                   |
| нw                    | APL NUC (UEFI)              | APL NUC (UEFI)                                                                                   | APL NUC (UEFI)                       | APL NUC (UEFI)      | APL NUC (UEFI)              |
|                       | APL UP2 (UEFI)              | APL UP2 (UEFI)                                                                                   | KBL NUC (UEFI)                       | KBL NUC (UEFI)      | KBL NUC (UEFI)              |
|                       |                             |                                                                                                  | APL UP2 (UEFI)                       | APL UP2 (UEFI)      | APL UP2 (UEFI)              |
|                       |                             |                                                                                                  |                                      |                     | • ARM                       |
|                       | • VT-x                      | • Virtio (v1.0)                                                                                  | <ul> <li>Android as guest</li> </ul> | • vHost             | Real Time                   |
| Hypervisor            | • VT-d                      | <ul><li>Power Management<br/>(Px/Cx)</li><li>VM management</li><li>ACRN debugging tool</li></ul> | <ul> <li>AliOS as guest</li> </ul>   | Power Management    | Windows as guest            |
|                       | CPU static-partitioning     |                                                                                                  | <ul> <li>Zephyr as guest</li> </ul>  | (\$3/\$5)           | VxWorks as guest            |
|                       | memory partitioning         |                                                                                                  | MISRA C compliance                   |                     | Functional Safety capable   |
|                       | • Virtio (v0.95)            |                                                                                                  | Logical partitioning without         |                     | CPU sharing                 |
|                       | • VHM                       | • vSBL                                                                                           | Service OS                           |                     | • OVMF                      |
|                       | • EFI boot                  |                                                                                                  | Trusty (Security)                    |                     | • ARM                       |
|                       | Clear Linux as guest        |                                                                                                  | SBL boot                             |                     |                             |
| I/O<br>virtualization | • Storage                   | GPU Sharing:                                                                                     | GPU Prioritized Rendering            | GPIO virtualization | HECI sharing (Security)     |
|                       | • Ethernet                  | GPU Surface Sharing                                                                              | Touch sharing                        |                     | CSME/DAL sharing (Security) |
|                       | USB host controller (PT)    | IPU Sharing*                                                                                     | <ul> <li>IOC sharing*</li> </ul>     |                     | TPM Sharing (Security)      |
|                       | USB device controller (PT)  |                                                                                                  | Audio sharing                        |                     | eAVB/TSN Sharing            |
|                       | Audio (PT)                  |                                                                                                  | USB host controller Sharing          |                     | • SR-IOV*                   |
|                       | • WiFi (PT)*                |                                                                                                  | USB DRD virtualization               |                     |                             |
|                       | Touch (PT)                  |                                                                                                  |                                      |                     |                             |
|                       | , ,                         |                                                                                                  |                                      |                     |                             |



## Call for Participation

https://projectacrn.github.io/index.html https://projectacrn.org

Joining ACRN Community Today!!!