
Mike Halcrow and Eric Biggers / August 27

Efficiently Measuring File Contents

Agenda

● Taking measurements

● dm-verity

● Integrity and Authenticity in the File System

● fs-verity

● fs-verity use cases, e.g. Integrity Measurement Architecture (IMA)

Proprietary + Confidential

Taking Measurements

Proprietary + Confidential

Taking Measurements

● Entire object measured and validated prior to further action.

● Large objects incur significant latency on initial access.

● Trade-off: No revalidation on paging back in.

○ Malicious data source (file server or disk/controller

firmware).

■ Firmware attacks: EquationDrug, GrayFish.

https://www.theregister.co.uk/2015/02/17/kaspersky_labs_equation_group/
https://www.cs.bu.edu/~goldbe/teaching/HW55815/presos/eqngroup.pdf

Proprietary + Confidential

Taking Measurements

Proprietary + Confidential

Taking Measurements

● Authenticated dictionary structures enable partial measurements

while ensuring comprehensive validation.

● Log(Object Size) latency to start reading on first access.

● Trade-off: I/O Errors possible while processing is in-flight.

Proprietary + Confidential

dm-verity

Proprietary + Confidential

dm-verity

Block Device

dm-verity

File System

Proprietary + Confidential

● Full Disk: Protects all file system file content and metadata.

● Incremental updates require regenerating the entire auth tree.

○ Logistics would require packaging together system image updates.

○ Intractable complexity when dealing with the Android partner ecosystem.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

dm-verity

Proprietary + Confidential

● Partial Disk: Protects selected file system file content.

● Facilitates incremental updates to arbitrary subsets of the file system.

● Significantly reduces complexity in deployment.

● Trade-off: File system metadata unauthenticated.

○ Opportunity for attacker to creatively undermine the authenticity of the system.

Integrity and Authenticity in the File System

Proprietary + Confidential

fs-verity

Block Device

File Systemfs-verity

Proprietary + Confidential

fs-verity: File format

Original File Contents
fs-verity

descriptorMerkle tree

$N bytes ~ $N/129 bytes ~ 100 bytes

$ head -c $N /dev/urandom > file
$ fsverity setup file

Proprietary + Confidential

fs-verity: Merkle tree format

Original File Contents
fs-verity

descriptorMerkle tree

Level
depth - 1

Level
depth - 2 Level 0...

struct fsverity_descriptor {
 ...

 __u8 log_data_blocksize; /* e.g. 12 = 4096-byte blocks */
 ...
 __le16 data_algorithm; /* e.g. 1=SHA-256, 2=SHA-512 */
 ...
 __le64 orig_file_size;

}; /* followed by variable-length metadata items (extensions) */

/* extension items */
#define FS_VERITY_EXT_ROOT_HASH 1
#define FS_VERITY_EXT_SALT 2
#define FS_VERITY_EXT_PKCS7_SIGNATURE 3

fs-verity: Additional metadata

fs-verity: Computing the file measurement

Proprietary + Confidential

fs-verity: Enabling

Original File Contents
fs-verity

descriptorMerkle tree

$ fsverity enable file

● FS_IOC_ENABLE_VERITY
● File becomes read-only!
● Metadata is hidden from userspace

Proprietary + Confidential

fs-verity: Reading data

Original File Contents
fs-verity

descriptorMerkle tree

readpage
completion

Read hash
page(s)

Verify
hashes

workqueue

● ->readpages() hook covers both read() and mmap() accesses
● Hash pages are cached in page cache for efficiency
● Direct I/O is forbidden (falls back to buffered I/O)

Proprietary + Confidential

fs-verity: File measurements

 fs-verity provides file measurements (hashes) in constant time

● … subject to on-access enforcement
○ Applications get EIO at runtime if they try to read corrupted data

● File measurements available in kernel, but also exposed to userspace via
FS_IOC_MEASURE_VERITY:

$ fsverity measure /bin/ls
sha256:9fef94de94184dc647a6f98f055896e2c13bf90052c73ca6324c0eb2bffc7991 /bin/ls

Proprietary + Confidential

fs-verity: Use cases

Categories of use cases:
● Integrity-only

○ Detect/prevent accidental corruption only
● Audit

○ Log the file measurement, but no enforcement
● Authenticity ("appraisal")

○ Detect/prevent both accidental and malicious changes

Users will be able to choose how to use fs-verity:
● IMA (Integrity Measurement Architecture) policy

○ Complex, but most feature-rich
○ Planned (not yet in patchset)

● Userspace-only policy, using FS_IOC_MEASURE_VERITY
● Built-in signature verification against fs-verity keyring

Proprietary + Confidential

Integrity Measurement Architecture (IMA)

File System

Executable Library Config File

execve() mmap() open()

Measure

Today:

Proprietary + Confidential

Integrity Measurement Architecture (IMA) with fs-verity

File System

Executable Library Config File

execve() mmap() open()

Measure

Tomorrow?

Proprietary + Confidential

● Linux kernel patchset

○ https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux.git/log/?h=fsverity

● Userspace utility

○ https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/fsverity-utils.git

● Tests

○ https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/xfstests-dev.git/log/?h=fsverity

fs-verity: Resources

https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux.git/log/?h=fsverity
https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/fsverity-utils.git/
https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/xfstests-dev.git/log/?h=fsverity

Thank You

