fs-verity
Efficiently Measuring File Contents

Mike Halcrow and Eric Biggers / August 27

Agenda

e Taking measurements

e dm-verity

e Integrity and Authenticity in the File System
o fs-verity

e fs-verity use cases, e.g. Integrity Measurement Architecture (IMA)

Google

Taking Measurements

Hash

DATA

Taking Measurements

e Entire object measured and validated prior to further action.

e Large objects incur significant latency on initial access.

e Trade-off: No revalidation on paging back in.

o Malicious data source (file server or disk/controller

firmware).

m Firmware attacks: EquationDrug, GrayFish.

Google

https://www.theregister.co.uk/2015/02/17/kaspersky_labs_equation_group/
https://www.cs.bu.edu/~goldbe/teaching/HW55815/presos/eqngroup.pdf

Taking Measurements

Hash 0
+
Hash 1

hash(

Top Hash

Hash Hash
0 1
hash(oo) hash([)
Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash(L1) hash(L2) hash(L3) hash(L4)
L1 L2 L3 L4

Data
Blocks

Taking Measurements

EEEEE

e Authenticated dictionary structures enable partial measurements

while ensuring comprehensive validation.

e Log(Object Size) latency to start reading on first access.

e Trade-off: 1/0 Errors possible while processing is in-flight.

Google

dm-verity

A

Your device software can't be
checked for corruption. Please

lock the bootloader.

Visit this link on another device:
g.co/ABH

dm-verity

File System

dm-verity

Block Device

dm-verity

e Full Disk: Protects all file system file content and metadata.
e Incremental updates require regenerating the entire auth tree.
o Logistics would require packaging together system image updates.

o Intractable complexity when dealing with the Android partner ecosystem.

Google

Integrity and Authenticity in the File System

e Partial Disk: Protects selected file system file content.

e Facilitates incremental updates to arbitrary subsets of the file system.
e Significantly reduces complexity in deployment.

e Trade-off: File system metadata unauthenticated.

o Opportunity for attacker to creatively undermine the authenticity of the system.

fs-verity

fs-verity

A

Y

File System

Block Device

fs-verity: File format

$ head -c $N /dev/urandom > file

$ fsverity setup file

$N bytes ~$N/129 bytes ~ 100 bytes
Original File Contents Merkle tree SRYEIS
descriptor

fs-verity: Merkle tree format

fs-verity

Original File Contents Merkle tree .
descriptor

Level Level

depth -1 depth - 2 EvEl

fs-verity: Additional metadata

struct fsverity_descriptor {
;;QS log_data_blocksize; /* e.g. 12 = 4096-byte blocks */
;;ie16 data_algorithm; /* e.g. 1=SHA-256, 2=SHA-512 =*/
;;ie64 orig_file_size;

}; /* followed by variable-length metadata items (extensions) */

/* extension items */

#define FS_VERITY_EXT_ROOT_HASH 1

#define FS_VERITY_EXT_SALT
#define FS_VERITY_EXT_PKCS7_SIGNATURE 3

fs-verity: Computing the file measurement

File measurement sha256:6a4e118a3b0{57cR84dfdfe0514...

!

alg=SHA-256 | Root
blocksize=... hash

__

-
N N\

Data [| [| [LT PP

Offset 0 16384 32768 49152 65536 81920 98304

fs-verity descriptor

Level 1 (root)

fs-verity: Enabling

$ fsverity enable file

|

Original File Contents Merkle tree

fs-verity
descriptor

e FS_IOC_ENABLE_VERITY
e File becomes read-only!
e Metadata is hidden from userspace

fs-verity: Reading data

- . fs-verity
Original File Contents Merkle tree descriptor
readpage workqueue Read hash Verify
completion page(s) hashes

e ->readpages() hook covers both read() and mmap() accesses
e Hash pages are cached in page cache for efficiency
e Direct /0 is forbidden (falls back to buffered 1/0)

fs-verity: File measurements

fs-verity provides file measurements (hashes) in constant time

e .. subject to on-access enforcement
o Applications get EIO at runtime if they try to read corrupted data

e File measurements available in kernel, but also exposed to userspace via
FS_IOC_MEASURE_VERITY:

$ fsverity measure /bin/ls

sha256:9fef94de94184dc647a6f98f055896e2c13bf90052c73cab6324c0eb2bffc7991 /bin/ls

fs-verity: Use cases

Categories of use cases:
e Integrity-only
o Detect/prevent accidental corruption only
e Audit
o Log the file measurement, but no enforcement
e Authenticity ("appraisal”)
o Detect/prevent both accidental and malicious changes

Users will be able to choose how to use fs-verity:
e IMA (Integrity Measurement Architecture) policy
o Complex, but most feature-rich
o Planned (not yet in patchset)
e Userspace-only policy, using FS_IOC_MEASURE_VERITY
e Built-in signature verification against fs-verity keyring

Integrity Measurement Architecture (IMA)

Today:

File System

N/

>

Executable Library Config File

ap() open()

execve() mm
\ /
Measure
N
A

Hash

Integrity Measurement Architecture (IMA) with fs-verity

File System \ /
— Executable Library Config File
execve() mmap() open()
— T =
Measure
/N

Tomorrow?

fs-verity: Resources

e Linux kernel patchset

o https://qit.kernel.org/pub/scm/linux/kernel/qit/ebiggers/linux.git/log/?h=fsverity

e Userspace utility

o https://qit.kernel.org/pub/scm/linux/kernel/qit/ebiggers/fsverity-utils.git

e Tests

o https://qit.kernel.org/pub/scm/linux/kernel/git/ebiggers/xfstests-dev.qit/log/?h=fsverity

Google

https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux.git/log/?h=fsverity
https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/fsverity-utils.git/
https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/xfstests-dev.git/log/?h=fsverity

Thank You

oooooo

