
A DevOps State of Mind:
Continuous Security
with DevSecOps + Containers

Chris Van Tuin
Chief Technologist, NA West / Silicon Valley
cvantuin@redhat.com

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

SECURITY BREACH: BILLION DATA RECORDS

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

36% - Employees not taking proper
security measures

32% - Outside breach

14% - Unpatched or unpatchable

11% - Internal attack by an employee

4% - Shadow IT

3% - Bring your own device/mobile

Source: Techvalidate/Red Hat

% of
Respondants

WHAT IS THE GREATEST SECURITY RISK?

“Only the paranoid survive”
 - Andy Grove, 1996

SECURITY MUST EVOLVE & KEEP UP

ANY COMBINATION, WHETHER TRADITIONAL OR CONTAINERIZED

LEGACY APPS
(1,000+)

BARE METAL
PRIVATE CLOUD PUBLIC CLOUDVIRTUAL

PRODUCTION DEV/TEST

HYBRID CLOUD ENVIRONMENTS

BARE METAL VIRTUAL PRIVATE CLOUD

OFF-PREMISEON-PREMISE

PUBLIC CLOUD

DATA

DATA

DISTRIBUTED APPLICATIONS

DEV QA OPS

SECURITY IS AN AFTERTHOUGHT

| SECURITY |

“Patch?
The servers are behind the firewall.”

- Anonymous (far too many to name), 2005 - …

DEVSECOPS

+ +

End to End
Security

DEV QA OPS

Culture Process Technology

Linux + Containers
IaaS

Orchestration
CI/CD

Source Control Management
Collaboration

Build and Artifact Management
Testing

Frameworks

Open Source

DEVSECOPS

Continuous
Security

Improvement
Process

Optimization
Security

Automation

Dev QA Prod

Reduce Risks, Lower Costs, Speed Delivery, Speed Reaction

CONTAINERS

LAPTOP

Container

Application

OS dependencies

Guest VM

LINUX

BARE METAL

Container

Application

OS dependencies

LINUX

VIRTUALIZATION

Container

Application

OS dependencies

Virtual Machine

LINUX

PRIVATE CLOUD

Container

Application

OS dependencies

Virtual Machine

LINUX

PUBLIC CLOUD

Container

Application

OS dependencies

Virtual Machine

LINUX

APPLICATION PORTABILITY WITH CONTAINERS

CONTAINERS AT SCALE

Scheduling Monitoring

Persistence

DiscoveryLifecycle & health

Scaling Aggregation Security

MORE THAN CONTAINERS…

BARE METAL VIRTUAL PRIVATE CLOUD PUBLIC CLOUD

DEVSECOPS
End to End Security

+ +

DEV QA OPS

SECURITY

Web Database
replicas=1,  
role=db

replicas=2,  
role=web

ORCHESTRATION
Deployment, Declarative

Nodes

Controller
Manager

&
Data Store

(etcd)

role=web role=web

ORCHESTRATION
Schedule + Provision Pods (Compute/Storage/Network)

Image
Registry

Pods

Nodes

Web
replicas=2,  
role=web
ReplicaSet

role=web role=db role=web

Pods

Nodes

Image
Registry

ORCHESTRATION
Schedule + Provision Pods (Compute/Storage/Network)

Web
replicas=2,  
role=web
ReplicaSet

Database
replicas=1,  
role=db
StatefulSet

Web Database

role=web role=db role=web

replicas=1,  
role=db

replicas=2,  
role=web

ORCHESTRATION
Service (Load Balancer)

Pods

Nodes

Services

Controller
Manager

&
Data Store

(etcd)

HEALTH CHECK

Monitoring &
Logging

Pods

Nodes

Services Web Database

role=web role=db role=web

replicas=1,  
role=db

replicas=2,  
role=web

HEALTH CHECK

Pods

Nodes

Services Web Database

role=web role=db role=web

replicas=1,  
role=db

replicas=2,  
role=web

role=web

Controller
Manager

&
Data Store

(etcd)

Web Database
replicas=1,  
role=db

replicas=2,  
role=web

HEALTH CHECK

Pods

Nodes

Services

role=web role=db role=web

Controller
Manager

&
Data Store

(etcd)

Web Database
replicas=1,  
role=db

replicas=2,  
role=web

AUTO-SCALE

Monitoring &
Logging

80% CPU

Pods

Nodes

Services

role=web role=db role=web

Web Database
replicas=1,  
role=db replicas=3  

role=web

AUTO-SCALE

80% CPU

Pods

Nodes

Services

role=web role=db role=web role=web

Controller
Manager

&
Data Store

(etcd)

Pods

Nodes

Services Web Database
replicas=1,  
role=db replicas=3  

role=web

AUTO-SCALE

50% CPU

role=web role=db role=web role=web

Controller
Manager

&
Data Store

(etcd)

CONTAINER SECURITY

Network
isolation

Storage API & Platform
access

Monitoring &
Logging

Federated
clusters

Registry
Container

host

{}

CI/CDImages

SECURING CONTAINERS

Builds

CONTAINER BUILDS

4

● Are there known vulnerabilities in
the application layer?

● Are the runtime and OS layers up
to date?

● How frequently will the container
be updated and how will I know
when it’s updated?

CONTENT: EACH LAYER MATTERS

CONTAINER

OS

RUNTIME

APPLICATION

CONTENT: EACH LAYER MATTERS

4

● Are there known vulnerabilities in
the application layer?

● Are the runtime and OS layers up
to date?

● How frequently will the container
be updated and how will I know
when it’s updated?

CONTENT: EACH LAYER MATTERS

CONTAINER

OS

RUNTIME

APPLICATION

JAR CONTAINER

 docker.io
RegistryPrivate

Registry

FROM fedora:1.0
CMD echo “Hello”

Build file

Physical, Virtual, Cloud

Image Container

Build RunShip

CONTAINER BUILDS

Best Practices

• Treat as a Blueprint

• Specify a user, defaults to root

• Don’t login to build/configure

• Version control build file

• Be explicit with versions, not latest

• Each Run creates a new layer

CONTAINER BUILDS

FROM fedora:1.0
CMD echo “Hello”

Build
file

Build

A CONVERGED SOFTWARE  
SUPPLY CHAIN

CONTAINER IMAGE SECURITY

64% of official images in Docker Hub  
contain high priority security vulnerabilities

examples:

ShellShock (bash)
Heartbleed (OpenSSL)

Poodle (OpenSSL)

Source: Over 30% of Official Images in Docker Hub Contain High Priority Security Vulnerabilities, Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner, BanyanOps,
May 2015 (http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf)

WHAT’S INSIDE THE CONTAINER MATTERS

http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf

SECURITY IMPLICATIONS
What’s inside matters…

code config data

Kubernetes
configmaps

secrets
Container

image

Traditional  
data services,
Kubernetes  

persistent volumes

TREAT CONTAINERS AS IMMUTABLE

CONTAINER REGISTRY SECURITY

PRIVATE REGISTRY

IMAGE SIGNING
Validate what images and version are running

CONTINUOUS INTEGRATION
WITH CONTAINERS

CONTINUOUS INTEGRATION + SECURITY

Security

CONTINUOUS INTEGRATION WITH
SECURITY SCAN

CONTINUOUS DELIVERY
WITH CONTAINERS

CONTINUOUS DELIVERY WITH CONTAINERS

CONTINUOUS DELIVERY + SECURITY

CONTINUOUS DELIVERY:
DEPLOYMENT STRATEGIES

CONTINUOUS DELIVERY DEPLOYMENT STRATEGIES

DEPLOYMENT STRATEGIES

• Recreate

• Rolling updates

• Blue / Green deployment

Recreate

Version 1 Version 1Version 1

Version 1.2

`

Tests / CI

RECREATE WITH DOWNTIME

Version 1 Version 1Version 1

Version 1.2

`

Tests / CI

RECREATE WITH DOWNTIME

Version 1.2 Version 1.2Version 1.2

RECREATE WITH DOWNTIME
Use Case
• Non-mission critical services

Cons
• Downtime

Pros
• Simple, clean
• No Schema incompatibilities
• No API versioning

Rolling Updates

Version 1 Version 1Version 1

Version 1.2

`

Tests / CI

ROLLING UPDATES with ZERO DOWNTIME

Deploy new version and wait until it’s ready…

Version 1 Version 1 V1.2

Health Check:
readiness probe

 e.g. tcp, http, script

V1

Each container/pod is updated one by one

Version 1.2

50%

Version 1 V1 V1.2

Each container/pod is updated one by one

Version 1.2Version 1.2Version 1.2

100%
Use Case
• Horizontally scaled
• Backward compatible

API/data
• Microservices

Cons
• Require backward

compatible APIs/data
• Resource overhead

Pros
• Zero downtime
• Reduced risk, gradual

rollout w/health checks
• Ready for rollback

Blue / Green Deployment

Version 1

BLUE / GREEN DEPLOYMENT

Route

BLUE

Version 1

BLUE / GREEN DEPLOYMENT

Version 1.2

BLUE GREEN

Version 1 Tests / CI

BLUE / GREEN DEPLOYMENT

Version 1.2

BLUE GREEN

Version 1 Version 1.2

BLUE / GREEN DEPLOYMENT

Route

Version 1.2

BLUE GREEN

Version 1

BLUE / GREEN DEPLOYMENT

Rollback

Route

Version 1.2

BLUE GREEN

Use Case
• Self-contained micro

services (data)

Cons
• Resource overhead
• Data synchronization

Pros
• Low risk, never

change production
• No downtime
• Production like testing
• Rollback

RAPID INNOVATION &
EXPERIMENTATION

”only about 1/3 of ideas improve the metrics  
they were designed to improve.” 

Ronny Kohavi, Microsoft (Amazon)

MICROSERVICES
RAPID INNNOVATION & EXPERIMENTATION

CONTINUOUS FEEDBACK LOOP

A/B TESTING USING CANARY DEPLOYMENTS

Version 1.2Version 1

100%
Tests / CI

Version 1.2

Route

25% Conversion Rate ?! Conversion Rate

CANARY DEPLOYMENTS

50% 50%

Version 1.2Version 1

Route

Version 1.2

25% Conversion Rate 30% Conversion Rate

CANARY DEPLOYMENTS

25% Conversion Rate

100%

Version 1 Version 1.2

Route

Version 1.2

30% Conversion Rate

CANARY DEPLOYMENTS

Version 1.2Version 1

100%
Route

Rollback

25% Conversion Rate 20% Conversion Rate

CANARY DEPLOYMENTS

CONTAINER HOST SECURITY

Kernel
Hardware (Intel, AMD) or Virtual Machine

Containers ContainersContainers

Unit File

Docker
Image

Container CLI

SYSTEMD

Cgroups Namespaces SELinux

Drivers

CONTAINERS ARE LINUX

seccomp Read Only mounts

CGROUPS - RESOURCE ISOLATION

NAMESPACES - PROCESS ISOLATION

SELINUX - MANDATORY ACCESS CONTROLS

Password
Files

Web
Server Attacker

Discretionary Access Controls  
(file permissions)

Mandatory Access Controls  
(selinux)

Internal
Network

Firewall
Rules

Password
Files

Firewall
RulesInternal

Network

Web
Server

selinux
policy

SECCOMP - DROPPING PRIVILEGES

READ ONLY MOUNTS

Best Practices
• Don’t run as root
• Limit SSH Access
• Use namespaces
• Define resource quotas
• Enable logging
• Apply Security Errata
• Apply Security Context
 and seccomp filters

http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html

CONTAINER HOST SECURITY

Kernel
Hardware (Intel, AMD) or Virtual Machine

Containers ContainersContainers

Unit File

Docker
Image

Container

SYSTEM

Cgroup Namespace SELinu

Driver seccom Read Only

Network
isolation

Storage API & Platform
access

Monitoring &
Logging

Federated
clusters

Registry
Container

host

{}

CI/CDImagesBuilds

SECURING CONTAINERS

NETWORK ISOLATION

Network Namespace  
provides resource isolation

NETWORK ISOLATION

Multi-Environment Multi-Tenant

NETWORK POLICY
example:  

all pods in namespace ‘project-a’ allow traffic  
from any other pods in the same namespace.”

STORAGE SECURITY

Local Storage Quota

Security Context Constraints

STORAGE SECURITY

API & PLATFORM ACCESS

Authentication
 via

OAuth tokens and
SSL certificate

Authorization
 via

Policy Engine
checks

User/Group
Defined Roles

API & PLATFORM ACCESS

MONITORING & LOGGING

Aggregate platform and application log access via Kibana + Elasticsearch

LOGGING

Historical CPU and Memory usage

MONITORING

FEDERATION

Amazon East OpenStack

FEDERATED CLUSTERS
Roles & access management (in-dev)

MICROSERVICES

Monitoring & Metrics
-prometheus (logs)
-grafana (visual)

Access Control
& usage policies
-mixr (policy decisions)

Encryption & Auth
-citadel
-service 2 service
-user auth

Traffic routing
- pilot
- circuit breaker
- a/b testing
- traffic mirroring

Fault injections
-envoy
corner cases: abort & delays

SERVICE MESH

Deployment
Frequency

Lead
Time

Deployment 
Failure Rate

Mean Time
to Recover

99.999

Service
Availability

DEVSECOPS METRICS

Compliance
Score

THANK YOU

linkedin: Chris Van Tuin
email: cvantuin@redhat.com
twitter: @chrisvantuin

