
Matrix Math at Scale with
Apache Mahout and Spark

Andrew Musselman
akm@apache.org

Personal

Live in Seattle

Two decent kids, beautiful and
supportive photographer wife

Snowboarding, bicycling, music,
sailing, amateur radio (KI7KQA)

Co-host of podcast Adversarial
Learning with @joelgrus

About Me
Professional

Data science and engineering, Chief
Analytics Officer at A2Go

Software engineering, web dev, data science
at online companies

Chair of Mahout PMC; started on Mahout
project with a bug in the k-means method

Apache Mahout: Beyond MapReduce

Dmitriy Lyubimov and Andrew Palumbo

https://www.amazon.com/dp/B01BXW0HRY

Recent Publications on Mahout
Encyclopedia of Big Data Technologies

Apache Mahout chapter by A. Musselman

https://www.springer.com/us/book/9783319775241

Apache Mahout Web Site Relaunch
http://mahout.apache.org

Thanks to Dustin VanStee,
Trevor Grant, and David Miller
(https://startbootstrap.com)

Jekyll-based, publish with push
to source control repo

RIP Little Blue Man

https://startbootstrap.com

Getting Started with Apache Mahout
● Project site at http://mahout.apache.org
● Mahout channel on The ASF Slack domain

○ #mahout on https://the-asf.slack.com
● Mailing lists

○ User and Dev lists
○ https://mahout.apache.org/general/mailing-lists,-irc-and-archives.html

● Clone the source code
○ https://github.com/apache/mahout

● Or get a pre-built binary build
○ “Download Mahout” button on http://mahout.apache.org

● Small, responsive and dedicated project team
● Experiment and get as close to the underlying arithmetic as you want to

http://mahout.apache.org
https://the-asf.slack.com
https://mahout.apache.org/general/mailing-lists,-irc-and-archives.html
https://github.com/apache/mahout
http://mahout.apache.org

Agenda

● Intro/Motivation
● Samsara DSL and Syntax
● Matrix Multiplication

Optimizations
● JVM/ViennaCL/CUDA
● Install Mahout/Spark

● The REPL
● Other New Stuff:

Zeppelin, Algorithm
Development
Framework

● Next Steps/Conclusion

Intro/Motivation

Intro
About Apache Spark

● Scalable distributed data processing
and analytics engine

● Solid replacement for Hadoop
MapReduce-based processes

● Cached results between steps
eliminates re-scanning large files

● Scala, Python, R, SQL APIs
● MLLib machine learning library
● GraphX graph processing library

About Apache Mahout

● Distributed linear algebra framework
running on Spark, Flink, H2O

● Mathematically expressive Scala DSL
● Pluggable compute back-end (Spark

recommended, Flink supported)
● Modular native solvers for

CPU/GPU/CUDA acceleration
● Designed for fast experimentation with

clean, math-like syntax
● Prototype to production with the same

code

Intro
Spark ArchitectureMahout Architecture

Motivation: Why Matrix Math?
Machine learning foundations in vectors and matrices, arithmetic

Example data sets and corresponding vectors/matrices:

● Website access logs: vectors are visitors identified by user or cookie ids, and
values are # of times visiting any given product page

● Banking transactions: vectors are customer ids or account numbers, values
are transaction amounts for each vendor id

● Oil well drilling site sensor data: vectors are equipment ids, with values being
reported value of each sensor on the equipment at any given timestamp

● Movie ratings: vectors are user ids, and values are 1-5 “star” rating for each
movie

Motivation: Why Matrix Math?
Typical requirements of a machine learning method:

Highly iterative

Large-scale data sets

Around version 0.10 of Mahout it became obvious that using Hadoop MapReduce
was causing more pain than it was solving, due to massively redundant data reads
required

Motivation: Why Not Python/R?
Scale issues

Data set size

Number of iterations

Run-time expensive or impossible

Frameworks/products to parallelize/distribute compute are out there but are
maturing or incomplete, e.g., Dask for Python, Revolution for R

Motivation: Why Not Just Use Spark MLLib?
Unique Spark and Scala idioms required

Skill and experience with these idioms needed

Translating symbolic math to code time-consuming and error-prone

Math-like idioms and flavor

Scalability built-in

Templating for algorithm development

Simpler translation from machine learning papers to code

Motivation: Samsara DSL/Syntax Bridging the Gap

Samsara DSL and Syntax

Samsara DSL and Syntax
Samsara A’A

val C = A.t %*% A

MLLib A’A

val C = A.transpose().multiply(A)

Samsara DSL and Syntax
Computation in distributed stochastic PCA (dSPCA):

In Samsara DSL:

val G = B %*% B.t - C - C.t + (xi dot xi) * (s_q cross s_q)

Samsara DSL and Syntax
To import DSL for in-core linear algebra (automatic in the REPL):

import org.apache.mahout.math._

import scalabindings._

import RLikeOps._

https://mahout.apache.org/users/environment/in-core-reference.html

https://mahout.apache.org/users/environment/in-core-reference.html

Instantiating Vectors
// Dense vectors:

val denseVec1: Vector = (1.0, 1.1, 1.2)

val denseVec2 = dvec(1, 0, 1, 1, 1, 2)

// Sparse vectors:

val sparseVec1: Vector = (5 -> 1.0) :: (10 -> 2.0) :: Nil

val sparseVec1 = svec((5 -> 1.0) :: (10 -> 2.0) :: Nil)

// Dense matrices:

val A = dense((1, 2, 3), (3, 4, 5))

// Sparse matrices:

val A = sparse(

 (1, 3) :: Nil,

 (0, 2) :: (1, 2.5) :: Nil

)

Instantiating Matrices

// Diagonal matrix with constant diagonal elements:

diag(3.5, 10)

// Diagonal matrix with main diagonal backed by a vector:

diagv((1, 2, 3, 4, 5))

// Identity matrix:

eye(10)

Some Special Matrix Inits

Arithmetic and Assignment
// Plus/minus:

a + b

a - b

a + 5.0

a - 5.0

// Hadamard (elementwise) product:

a * b

a * 0.5

// Operations with assignment:

a += b

a -= b

a += 5.0

a -= 5.0

a *= b

a *= 5

Other Operators
// Optimized right and left multiply
with a diagonal matrix:

diag(5, 5) :%*% b

A %*%: diag(5, 5)

// Second norm, of a vector or matrix:

a.norm

// Transpose:

val Mt = M.t

// Dot product:

a dot b

// Cross product:

a cross b

// Matrix multiply:

a %*% b

import org.apache.mahout.math.decompositions._

// Cholesky decomposition

val ch = chol(M)

// SVD

val (U, V, s) = svd(M)

// In-core SSVD

val (U, V, s) = ssvd(A, k = 50, p = 15, q = 1)

Decompositions

// EigenDecomposition

val (V, d) = eigen(M)

// QR decomposition

val (Q, R) = qr(M)

More Samsara Reference
https://mahout.apache.org/users/environment/in-core-reference.html

https://mahout.apache.org/users/environment/in-core-reference.html

Matrix Multiplication Optimizations

Optimization of A’A

Optimization of A’A

Optimization of A’A

Optimization of A’A

Optimization of A’A

Optimization of A’A

JVM/ViennaCL/OpenMP/CUDA

Getting Outside the JVM
To do math outside the JVM Mahout uses ViennaCL as a facade layer in front of
OpenMP (for multi-core CPU) and CUDA (for GPU) for computation

API

Back-end

Hardware

Install Mahout/Spark

Install Spark
Visit https://spark.apache.org/downloads.html, select Spark and Hadoop versions or
directly download:

$ wget https://archive.apache.org/dist/spark/spark-2.1.1/spark-2.1.1-bin-hadoop2.7.tgz

$ tar xzvf spark-2.1.1-bin-hadoop2.7.tgz

$./spark-2.1.1-bin-hadoop2.7/sbin/start-all.sh

$ export SPARK_HOME=$PWD/spark-2.1.1-bin-hadoop2.7

Visit http://localhost:8080, get Spark Master URL, e.g., spark://bob:7077

$ export MASTER=spark://localhost:7077

https://spark.apache.org/downloads.html
https://archive.apache.org/dist/spark/spark-2.1.1/spark-2.1.1-bin-hadoop2.7.tgz
http://localhost:8080

Install Mahout Binary
Visit http://mahout.apache.org/general/downloads, click “Download Mahout,” or

$ wget http://apache.cs.utah.edu/mahout/0.13.0/apache-mahout-distribution-0.13.0.tar.gz

$ tar xzvf apache-mahout-distribution-0.13.0.tar.gz

$ export MAHOUT_HOME=$PWD/apache-mahout-distribution-0.13.0

$ cd apache-mahout-distribution-0.13.0

$./bin/mahout spark-shell

http://mahout.apache.org/general/downloads
http://apache.cs.utah.edu/mahout/0.13.0/apache-mahout-distribution-0.13.0.tar.gz

Install Mahout with Vienna/OMP/CUDA Support
Visit http://mahout.apache.org/general/downloads, go to “Download Latest,” or

$ wget

http://apache.cs.utah.edu/mahout/0.13.0/apache-mahout-distribution-0.13.0-src.tar.gz

$ tar xzvf apache-mahout-distribution-0.13.0-src.tar.gz

$ export MAHOUT_HOME=$PWD/apache-mahout-distribution-0.13.0

$ cd apache-mahout-distribution-0.13.0

$ mvn clean install -Pviennacl -DskipTests=true

$./bin/mahout spark-shell

http://mahout.apache.org/general/downloads
http://apache.cs.utah.edu/mahout/0.13.0/apache-mahout-distribution-0.13.0-src.tar.gz

The REPL

Playing with the Shell
Installation instructions and sample script:

https://github.com/andrewmusselman/talks/tree/master/open_source_summit

From http://mahout.apache.org/docs/latest/tutorials/samsara/play-with-shell.html

$./bin/mahout spark-shell

https://github.com/andrewmusselman/talks/tree/master/open_source_summit
http://mahout.apache.org/docs/latest/tutorials/samsara/play-with-shell.html

Linear Regression Example

Other New Stuff

Zeppelin and Algo Dev Framework
● Interpreter for Mahout in Zeppelin

lets you work in notebooks!
○ https://mahout.apache.org/docs/latest/

tutorials/misc/mahout-in-zeppelin

● Algorithm development framework
standardizes methods needed for
analytics jobs

○ http://mahout.apache.org/docs/latest/t
utorials/misc/contributing-algos

https://mahout.apache.org/docs/latest/tutorials/misc/mahout-in-zeppelin
https://mahout.apache.org/docs/latest/tutorials/misc/mahout-in-zeppelin
http://mahout.apache.org/docs/latest/tutorials/misc/contributing-algos
http://mahout.apache.org/docs/latest/tutorials/misc/contributing-algos

Algorithm Development Framework
● Patterned after R and Python

(sk-learn) APIs
● Fitter populates a Model
● Model contains parameter

estimates, fit statistics, a
summary, and a predict()
method

Next Steps/Conclusion

Next Steps for Mahout
● jCUDA work in a branch, in master soon
● Multi-GPU
● Optimizing where data lives and where compute takes place
● Spark 2.1 and Scala 2.11 support
● Release 0.14.0 planned for Fall 2018

● Try it out, get in touch!

Thank You

Q&A

@akm

