
Introduction to
Virtualization and
Containers
Phil Hopkins

@twitterhandle

Virtualization – What
is it?

What the heck is a hypervisor? Why are there so
many of them? What is a container and all the
related bits and pieces? Why would we want to use
them? And what is Metal-as-a-Service,
Infrastructure-as-a-service, Platform-as-a-Service, or
Storage-a-a-S, or all the other *aaS? How about
OPNFV and Cloud Foundry? What do I need to know
and how does this all fit together? This presentation
will answer these questions.

Introduction to Virtualization and Containers

Virtualization is an abstraction of computer
resources. Access to the resources are
consistent before and after abstraction.
Resource abstraction is not limited by
implementation, including the underlying
physical implementation.

Virtualization

Virtual
Machine

Virtual
Machine

Operating
system

Operating
system

Bin/LibsBin/Libs

Ap
p1

Ap
p2

Ap
p3

Ap
p4

Type 2 Hypervisor

A Virtual Machine is a software
construct that mimics the
characteristics of a physical server

Types of Virtualization

• Server Virtualization
• Client / Desktop / Application Virtualization
• Network Virtualization
• Storage Virtualization
• Service / Application Infrastructure

Virtualization

2 ways to achieve server virtualization

• Emulators
– Linux - Bochs, QEMU

– Very Slow

• Segmented Use of the Host Processor
– Most virtualization hypervisors use this technique

– Provided by a Hypervisor

– Faster

Hypervisors

• Type-1, native or bare-metal hypervisors
– XEN

• Type-2 or hosted hypervisors
– VirtualBox

• KVM on Linux has been classified as both
a type 1 and a Type 2

Virtual
Machine

Virtual
Machine

Type 1 Hypervisor

Operating
Systems

Bin/Libs

App 1 App 2

Operating
Systems

Bin/Libs

App 3 App 4

Virtual
Machine

Virtual
Machine

Type 2 Hypervisor

Operating
Systems

Bin/Libs

App 1 App 2

Operating
Systems

Bin/Libs

App 3 App 4

O/S

Paravirtualization

• Provides specialized APIs to virtual machines to
optimize their performance

– Similar yet not identical to the underlying
hardware-software interface

• Support as part of the kernel

– drivers
• Support has been offered as part of many of the

general Linux distributions since 2008

Cloud Computing

• Provides software interface to the hypervisor

• Allows remote creation and management of virtual
environments

• Usually includes sever types of virtualization
– Storage

– Network

– Machine

• Examples:
– AWS, OpenStack

Containers

chroot
1979/1982

jail
2000

Process
Containers

2006

NameSpaces
Present

global (i.e. root) namespace

MNT NS
/
/proc
/mnt/fsrd
/mnt/fsrw
/mnt/cdrom
/run2

UTS NS
globalhost
rootns.com

PID NS
PID COMMAND
1 /sbin/init
2 [kthreadd]
3 [ksoftirqd]
4 [cpuset]
5 /sbin/udevd
6 /bin/sh
7 /bin/bash

IPC NS
SHMID OWNER
32452 root
43321 boden

SEMID OWNER
0 root
1 Boden

MSQID OWNER

NET NS
lo: UNKNOWN…
eth0: UP…
eth1: UP…
br0: UP…

app1 IP:5000
app2 IP:6000
app3 IP:7000

USER NS
root 0:0
ntp 104:109
mysql 105:110
boden 106:111

Hardware

Operating System

Hypervisor

Virtual Machine

Operating
System

Bins / libs

App App

Virtual Machine

Operating
System

Bins / libs

App App

Hardware

Hypervisor

Virtual Machine

Operating
System

Bins / libs

App App

Virtual Machine

Operating
System

Bins / libs

App App

Hardware

Operating System

Container

Bins / libs

App App

Container

Bins / libs

App App

Type 1 Hypervisor Type 2 Hypervisor Linux Containers

Why? It's still virtualization!

• Each container has:

– its own network interface (and IP address)
● can be bridged, routed... just like $your_favorite_vm

– its own filesystem
● Debian host can run Fedora container (&vice-versa)

– isolation (security)
● container A & B can't harm (or even see) each other

– isolation (resource usage)
● soft & hard quotas for RAM, CPU, I/O...

Kubernetes

Kubernetes Features

• Containerized infrastructure

• Application-centric management

• Auto-scalable infrastructure

• Environment consistency across development testing and
production

• Loosely coupled infrastructure, where each component can act as
a separate unit

• Higher density of resource utilization

• Predictable infrastructure which is going to be created

CONTAINER 1
CONTAINER 2
CONTAINER 3

POD Worker Node 3

Master Node

Worker Node 2

Worker Node 1

XaaS - *Everything as
a Service

Where did XaaS come from?

• Software as a Service (SaaS) — provider’s
applications running on a cloud infrastructure.

• Platform as a Service (PaaS) — Deploys
variousacquired applications onto the cloud
infrastructure.

• Infrastructure as a Service (IaaS) — processing,
storage and other computing resources Available for
operating systems and applications.

Also called Servicizing

• Product-service systems (PSS)
– cohesive delivery of products and services

• Servicizing
– transaction value from a combination of products and

services

– provide the function of the product

– also the service component of a product

– customers just want the function that the product provides

What do we see today?

• Software-as-a-Service (SaaS)

• Infrastructure-as-a-Service

• Platform-as-a-Service

• Storage-as-a-Service

• Desktop-as-a-Service

• Disaster recovery-as-a-Service

• Others

OPNFV

What is it?

• NFV

– Network Functions Virtualization

• OP

– Open Platform

• Collaborative open source platform for network
functions virtualization

• Started by the Linux Foundation in 2014

NFV - What is it?

• Implement Network Functions in Software
– load balancers
– Firewalls
– Customer Premises Equipment (CPE)
– Evolved Packet Core (EPC)
– IP Multi-media Subsystem (IMS)
– Broadband Network Gateways (BNG)
– And more

• Lowers TCO by virtualizing these functions

• Avoids restrictions the hardware implementations create

OPNFV Objectives

• Create an integrated and verified open source
platform that can investigate and showcase
foundational NFV functionality

• Provide proactive cooperation of end users to validate
OPNFV’s strides to address community needs

• Form an open environment for NFV products founded
on open standards and open source software

• Contribute and engage in open source projects that
will be influenced in the OPNFV reference platform

Cloud Foundry

What is it?

• Platform as a service (PaaS)

• Governed by the Cloud Foundry Foundation

– Sponsored by the Linux Foundation

• Originally developed by VmWare

• Open Source

– Source code is under an Apache License 2.0

What is PaaS?
• Usually delivers a computing platform

– including operating system
– programming-language execution environment
– database
– web server

• Deploys cloud applications
• Applications are created using provider tools:
• Programming languages
• Libraries
• Services
• Other tools

• Users can not manage or control the underlying cloud
infrastructure

• Users have control over the deployed applications

Cloud Foundry Projects
• Application Runtime Project Management Committee

(PMC)
– Directs strategy, development and quality control of the

core components
• BOSH PMC

– release engineering, deployment, lifecycle
management, and monitoring of distributed systems

• Extensions PMC
– extensions to the Cloud Foundry Runtime and BOSH

platform
• Open Service Broker API PMC

– a single, simple way to deliver services to applications
running within cloud native platforms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

