TUX : Trust Update on Linux Kernel

Suhho Lee

Mobile OS Lab, Dankook university suhho1993@gmail.com

Hyunik Kim, and Seehwan Yoo

{eternity13, seehwan.yoo}@dankook.ac.kr

ANKOOK UNIVERSITY

Index

- Intro
- Background
- Threat Model
- Goals
- TUX : Trusted Update on Linux Kernel
- Experiments
- Discussion
- Conclusion

Intro

Security vulnerabilities are prevalent.

- Tons of CVEs
- Meltdown & Spectre

Lots of security updates!

Less attention was given to the changing integrity after the updates are conducted.

Intro

Maintain Integrity

Verifying the system by checking whether there are any malicious modification.

Security Update

countermeasure vulnerabilities by modifying the system.

Can modern solutions distinguish between updates and malicious modifications?

Is the integrity being managed according to the updates?

Intel Trusted Execution Technology(TXT)

Intel's Measured / Verified boot technology

<u>tboot</u>

- Grub bootloader module
- Measure and verify integrity using DRTM

Launch control policy (LCP)

- Known good integrity values for certain booting stages
- Used to verify the integrity of the booting
- Also needs to be updated when the system is updated

Does not measure/verify Grub environment (e.g., Grub commands)

Open Cloud Integrity Technology (CIT)

Intel's remote attestation solution Validate TPM measurements from

the remote server

Known-good values

- Stored in the Open CIT server
- Imported from the local systems

Local updates are not transparent

- Open CIT cannot monitor updates conducted from the local systems
- If local system is updated, remote attestation fails

UEFI secure boot

UEFI BIOS's Verified boot component

- Verify integrity using the key stored in the firmware DB
- Booting components must be digitally signed

Updating is easy for Secure boot

- Sign updated binary and deploy
- Receive update and install

Not suitable for Linux environment

- Does not approve Grub bootloader
- Cannot verify Grub commands

No TPM measurements

MOSL Mobile OS Laboratory

Keys used in UEFI secure boot

INIVERSITY

Threats!

Subverting Open CIT

- Occurs because the local updates are not transparent to the Open CIT
- Assumption: Attacker can update OS and perform measured boot

(OOK UNIVERSITY

Threats!

Circumventing verified boot

- Rootkit
 - Breaking Hardware-Enforced Security with Hypervisors (Black hat USA 2016)
- Attacker can modify Grub commands even though the Secure boot is on
- TXT and Secureboot lack of Grub command verification

Goals!

To maintain integrity properly...

- 1. Remote attestation must manage local updates transparently.
- 2. Maintain whitelist according to conducted updates and perform remote attestation using the up-to-date whites list.
- 3. Perform thorough measured / verified booting including Grub.

TUX Code can be found at... https://github.com/suhho1993/TUX.git

MOSL Mobile OS Laboratory

Trusted Platform Module (TPM)

Provide TEE for integrity measurement

Tamper-proof device

Practically used in measured boot

Platform Configuration Registers (PCRs)

- TPM measures integrity using extend operation.
 - $PCR_{new} = Hash(PCR_{old} \oplus Hash(Data))$
 - Form Chain-of-Trust to verify the system configuration
 - Measure entire booting process with extend operation

TPM Architecture

Shim and Grub

Shim

- 1stage bootloader to support UEFI secure boot
- Can be verified by the UEFI secure boot
 - Signed with MS's firmware key
- Shim verifies and execute Grub
- Verification using firmware keys
 - Shim_lock verification

Grub

• CoreOS and other GRUBs support measured boot using TPM v2.0

TUX server is the maintainer/administrator of the updates.

TUX only verifies integrity of the Linux Booting process.

TUX server is trusted and safe.

TUX owner holds manifest of specific booting process of each managed machine.

All managed machines hold TUX owner's public key.

TUX Architecture

DANKOOK UNIVERSITY

Integrity Manager

Integrity management / kernel update component

- Located at the Open CIT server
- Consists of Trusted repository, Whitelist updater, PCR-signed Kernel generator

Trusted repository

- Update repository
- Stores kernel binaries and manifests for the update
- Provide binaries to generate new whitelist.

Whitelist updater

- Calculate new integrity value and update the whitelist
- Calculate t-PCR
- PCR-signed kernel generator
 - Generate PCR-signed kernel

Integrity manager

Kernel update using TUX

ANKOOK UNIVERSITY

Remote attestation with TUX

With Integrity Manger, TUX...

- Manage local updates transparently (Goal 1)
- Prevent remote attestation failure after updates
- Perform remote attestation with updated whitelist (Goal 2)

A. Remote Attestation

PCR-Signed Kernel

t-PCR

• Calculated known-good value by extending entire booting process

PCR-signed Kernel

- Use t-PCR value to sign the kernel binary instead of digested hash
- Signed with TUX owner's private key
- Used to verify integrity during the booting

Trusted Secure boot (TS-Boot)

Combination of UEFI secure boot, Shim, and CoreOS Grub

• Perform robust measured/verified boot

Linux friendly

Binary verification using the firmware key

• Shim_lock verification

Thorough measurement / verification of the booting process

- Including Grub commands and modules
- PCR-verification

PCR-Verification

- Verifies the integrity of the entire booting process on runtime
- Extend measurement of every booting process using the PCR12
- Execute kernel using linuxefi function
 - Pass the kernel to Shim using shim_lock_verification
- Compare PCR12 with t-PCR stored in the kernel signature
- Any changes can be detected

Trusted Secure Boot (TS-Boot)

With TS-Boot, TUX...

Measure / verify the integrity of the entire booting process including Grub command and modules (Goal 3)

Boot-time integrity verification

Experiment

• TPM measurement

A. PC1+SB on+Kernel 104 B. PC1+SB on+Kernel 109 C. PC1+SB off+Kernel 109 D. PC2+SB on+Kernel 109 Bank/Algorithm: TPM ALG SHA256(0x000b) PCR 00: 05 48 02 7e cPCR_00: 05 48 02 7e cPCR_00: 05 48 02 7e cfpCR 00: 05 48 02 7e cf PCR 01: f1 67 99 3b a PCR_01: f1 67 99 3b apcR_01: f1 67 99 3b a5pcR_01: c7 84 e6 09 94 PCR 02: 3d 45 8c fe 5 PCR_02: 3d 45 8c fe 5 PCR 02: 3d 45 8c fe 55 PCR 02: 3d 45 8c fe 55 PCR 03: 3d 45 8c fe 5 PCR 03: 3d 45 8c fe 5 PCR 03: 3d 45 8c fe 55 PCR 03: 3d 45 8c fe 55 PCR 04: f5 f8 1f 6b 5 PCR_04: f5 f8 1f 6b 5 PCR 04: f5 f8 1f 6b 5 PCR 04: f5 f8 1f 6b 5b PCR 05: de 89 35 69 c PCR 05: de 89 35 69 cPCR 05: de 89 35 69 c2PCR 05: 39 55 01 58 89 PCR 06: 3d 45 8c fe 5 PCR 06: 3d 45 8c fe 5 PCR 06: 3d 45 8c fe 55 PCR 06: 3d 45 8c fe 55 PCR 07: 25 c0 b3 ce 4 PCR_07: 25 c0 b3 ce 4 PCR 07: 47 d9 c1 f4 d9 PCR 07: 25 c0 b3 ce 45 PCR 08: 63 81 11 5c d PCR_08: f4 1e 86 df 9PCR 08: b1 5d 09 67 39PCR_08: a6 fe 12 0a 0f PCR 09: e2 fa 1b a3 f PCR_09: e2 fa 1b a3 fPCR 09: e2 fa 1b a3 f9PCR_09: e2 fa 1b a3 f9 PCR 10: 0b 74 50 53 8 P PCR 11: 53 45 a7 13 8 PCR 11: 79 bd 24 78 8 PCR 11: 00 00 00 00 00 PCR 11: 79 bd 24 78 88 PCR 12: 92 5a 80 6e c PCR 12: 31 68 59 c3 ePCR 12: 10 5e fc 8c b1PCR 12: 76 fc 4d 87 a9

TPM measurements

PCR #	Content	Measurement Host
PCR 0-7	BIOS and hardware configurations.	UEFI secure boot
PCR 8	Executed Grub commands.	Trusted Grub
PCR 9	Executed Modules from Trusted Grub.	Trusted Grub
PCR 10	Trusted Grub binary.	Shim
PCR 11	Kernel and initrd	Shim
PCR 12	Entire booting process.	UEFI Secure boot, Trusted Grub, and Shim.

Experiment

PCR-verification

1 inserted	<pre>searchno-floppyfs-uuidset=ro fi</pre>					
155	echo 'THIS IS TO FAIL PCR-VERIFICATION'					
156	linuxefi /boot/vmlinuz-4.4.0-104					
157	initrdefi /boot/initrd.img-4.4.0-					
"grub.cfg"	[Modified] 209 lines45%					

MOSL Mobile OS Laboratory

Experiment

• whitelist update

A. Database before update		B. T-PCR calculation C. Updated		Ipdated Database
name	I +	<pre>read line :linuxefi /boot/vmlinuz-4.4.0 this is CMD size: 128 /// linuxefi /boot/vmlinuz-4.</pre>	name	 +
0	2C890A9D73817FF5FF	SHA256: 959858259816346/DCD4//3101	0	2C890A9D73817FF5FF0
1	D0D6F11EC99FCDCB5E	Cat: 10044190101135061861406/16945899999	1	D0D6F11EC99FCDCB5DI
2	3D458CFE55CC03EA1F	SHA256: 16D9a99IIIDe4DIaDC8551483I	2	3D458CFE55CC03EA1F
3	3D458CFE55CC03EA1F		3	3D458CFE55CC03EA1F
4	0B8D250DEC8FF66980	read line :KERNEL_1	4	0B8D250DEC8FF669801
5	F5B3E890E81809C26E	this is kernel_2	5	F5B3E890E81809C26B0
6	3D458CFE55CC03EA1F	SHA256: 2d9e062c97501507862fabf2f5	6	3D458CFE55CC03EA1F
7	4A1E9F5FB851791010	cat: 16b9a99ff1be4bfabc8551483fa7c2e579	7	4A1E9F5FB85179101C
12	31178b751fa3df4d7	SHA256: a44be534acfaa53ea0290c275f	12	a44be534acfaa53ea0
		T-PCR SHA256: a44be534acfaa53ea029		

Host Name	Asset Tag Status BIOS Trust VMM Trust			Platform Trust
🗸 ubuntu	Ø	0	0	0
Target IP dubuntu	۷	0	ω	ω

MOSL Mobile OS Laboratory

Demo

Discussion

Roll-back and multiple kernel support

• Roll-back attack can be detected!

TUX owner's Key is Safe

• Open CIT server is safe / Firmware is safe

TUX may be applicable to environment other than desktop or server

SRTM or DRTM?

Integrity changes when update is conducted, and thus, it should be properly managed along with updates.

TUX...

Extends Open CIT to transparently mange local updates

Remote attestation with up-to-date whitelist

Thorough integrity measurement, including Grub commands and modules

Robust integrity verification with PCR-verification

Thank you.

Any Questions?

