
We The Few
Augmenting the Continuous Delivery Team With
Automation

@keith_strini
@dmfrey

Dan Frey…

Who Are We?

Keith Strini …

Field Facing Solutions Architect that serves as a technology
analyst for the US Department of Defense and Intelligence
communities. I architect, develop and field information systems
across the Joint Services both CONUS and OCONUS (Korea,
Japan, Europe, and the Middle East) and NATO

Advisory Solutions Architect on the App Transformation
team at Pivotal. I help companies move their legacy
workloads to the cloud. I work hands on with your
employees helping them replatform and modernize your
apps and instruct them on XP and lean principles.

End Vision vs Starting Vision

Release Engineering Stratification

App Operator

Developer
Enablement Release Platform Reliability

App Profiles
Prod Manifest
Unit/Smoke Test
Pipelines

Release Repository

Cadence Calendar

Platform Product Manager

Self Service Deployment

Noob Dev Team

unit/smoke security uat

pass

fail

Platform Reliability
Coordination Point For All Platform Environment

Changes.

■ Creates/Coordinates Cadence Meeting
■ Continuously Develops Resiliency

Probes based on Post Mortems
■ Maintains Environment Parity
■ Enforces Strict Runtime Version Control
■ Communicates Environment Adversity
■ Creates/Coordinate Resiliency Exercise
■ Instruments Distributed Tracing in Ops

Release Engineering
Coordination Point and Execution Lead

For All New Releases.

■ Attends Final Pre-Release Demo of
Apps

■ Verifies Release Artifacts
■ Coordinates Initial Release Date
■ Collaborates on Downstream

Environment Triage

Developer Enablement
Coordination Point For All New

Development Efforts.

■ Creates/Coordinates Platform on
boarding meeting

■ Provides Latest Information about
Platform Environments

Coordination Execution Resiliency

PRACTICES PRACTICES PRACTICES

Failure is Inevitable, Hope is Not a Strategy
Simple Complexity

• Create complex behavior from
simple building blocks

• Maintain simple independently
testable components

• Offload Management of
complex orchestration

• Inject fail safes ‘between’
simple components

• Unknown failures are then a
result of ‘rare’ emergent
behavior

** Simple System Failure
• Simple systems fail

• Simple systems fail less often than
complex systems

• Simple systems fail predictably

• Simple systems fail transparently

• Simple systems fail affordably

• Simple systems fail educationally

• Simple systems fail by being
inadequate

• Simple systems fail by becoming
complex

* Complex System Failure
• Changing mixtures of failures latent

within them

• Post-accident attribution accident to a

‘root cause’ is fundamentally wrong.

• Change introduces new failure

• Views of ‘cause’ limit the

effectiveness of defenses against

future events

• People continuously create safety

• Failure free operations require

experience with failure

Unit Testing… That’s so Justin and Britney…

Smoke … pfft … we couldn’t come up with a
software based term?

When you think of testing…

Care And Feeding Of
New Releases To
Ensure Early
Intervention

Dynamic Instrumentation
Out Of The Box Coupled
with OSS Production
Non-Functional Libraries

Decides on Feature
Maturity From a
Stability
Perspective

Smart Platform
Environment Variable
Injection Coupled with
Dynamic Routing

Been There, Done
That, Got the swag!

Traditional Unit Testing
Frameworks

Deep Understanding
of How New Efforts
Deploy Into
Operations

OSS Production Libraries
Coupled with Production
Platform
Monitoring/Metrics and
Threshold Alerting
integrated into Logging,
Monitoring and
Notification Services

Unit/Smoke

Bringing Sexy Back – Other tests don’t know how to act

Focuses Developers
on Contract Based
Testing For
Integration

Spring Cloud Contract
Framework

Contract Feature Flagging Canary Distributed Tracing

Developers Dev Enablement Release Operations Operations

Decoupled Integration
• If Speed Is What you Want, End-To-End Testing is not how you get there.

• Getting feedback…this week?
• Are you mocking me?

• Single Source of Truth…
• Verifying the Goods

• Isolation testing of Single Services (Provider or Consumer)
• I do not think that means what you think it means (Semantic Testing)
• Complexity From Simplicity, Not Complexity From Complexity
• Test Data…let’s not ignore the elephant in the room
• Stability, Stability, Stability… we’re talking Operations not Science Experiments
• Ah Sunsets…

• Paying off Technical debt by subtraction and addition
• You get me… you really get me

• Consumer defined APIs

Maintaining Operational Velocity

• I dunno. You tell me what you want.
• Non Techs getting in on the Action

• Ok so most of it works but I gotta send it back?
• Beauty of context encapsulation
• Waiting for a feature like you

• I see how we do 1 app but how do I manage 1000s?
• So what if we don’t know exactly what our users want?
• Ah Sunsets…

• Paying off Technical debt by subtraction and addition

Predictive Fire Fighting in Operations
• Almost trust you

• Canaries – Profiling the CPU, memory, disk usage, cache synch
• Rollback/Roll Forward Strategies

• Blue/Green Deployments
• The case of stateless
• The case of stateful (transactions, migrating data)
• Infrastructure Isolation

• A/B testing
• It not you, its me

• Distributed Tracing
• Yes we are talking scale here
• But that’s a lot of instrumentation
• Correlation is tough

• Good definitions of SLO/SLIs
• Threshold tuning

Operations as The Caretaker of Code?

• Your baby is ugly, Our baby is cute
– Platform as Product helps align our interests
– Automation helps us be responsive as a team

to our end users
– Lot’s of up front pain is better than chronic pain

indefinitely
– Success as defined by rhythm

Get Off My Lawn!
• Change Inherently Creates Failure

• Alignment of Values
• One Team One Fight

• Joint SLOs
• Platform SLIs
• Application SLIs
• Instrumentation

• Growing up is hard to do
• Graduating Product Teams to Self-Service Deployments

• Starting the Cycle Over
• Capturing Lessons Learned from every class
• Knowledge Transparency aides the greater team

Growing Up Is Hard To Do

• Graduating Product Teams to Self-Service
Deployments

• Resiliency Exercises as the litmus test
• Communicating the attitude that Stability is a team

sport
• Starting the Cycle Over

• Capturing Lessons Learned from every class
• Knowledge Transparency aides the greater team

In Conclusion

• End Vision – You can manage operations at scale with very small light
weight teams

• Release Engineering Maturity is a fundamental piece of that vision
• Understanding your particular environment’s adversity takes time
• Team chemistry takes time
• Automation takes time
• Take your Time. Your team as a whole will operate better because

of it.

“Sometimes you have to practice going slow, if you want to eventually go
fast forever”

