
App Streaming Using Android Containers
and ARM SOCs

Tzi-cker Chiueh
Information and Communications Labs
Industry Technology Research Institute

2

Everybody Wants to Make APPs
• Smartphone apps provide more fluent

interaction experiences than browser-
based web pages because they are able
to access native system resources and
advanced smartphone I/O capabilities.

3

But APP Fatigue Is Apparent
• American mobile user behavior

– Spent more than 85% time on APPs while using a
smartphone, but only five APPs are frequently used

– 80% of time on the first 3 most used APPs: 50% to
1st APP, 18% 2nd APP, 10% 3rd APP

– More than 70% downloaded APPs retain less than
1 day in the smartphone

• Threat to APP innovation: Convincing a
smartphone user to download and continue to
use a new APP is increasingly difficult.

• Solutions: Go back to browser or use APP
streaming

4

APP Testing and Security

• Making an app work on a wide range of platforms is painful
and very expensive

• BYOD security
– Recent Russian attack on an

US electric grid
1. Infect contractor’s computer
2. Steal credential
3. Implant malware on operator’s computer

AWS Device Cloud

Smartphone APP Streaming

6

APP Streaming
• Vision: One APP for all (Android) APPs

– APPs run in the cloud, experience all sensors in a user’s smartphone, and stream
their outputs to the smartphone’s audio/video devices.

– Technical objective: Attain the same interactivity and usability as local APP execution
with unmodified APPs

7

Tightened BYOD Security

Any Android or
iOS deviceAPPs run in

the cloud

• Centralized control and management of
which APPs are allowed in an enterprise

• Reduced data leakage risk even when
device is compromised

• Minimal attack surface for malware on
compromises device to infiltrate enterprise

8

Run an APP without Downloading it
Any Android or

iOS devices

APPs run on
Android cloud

• Effortless invocation of long-tail APPs
• Trying out a game APP without

downloading or installing it
• A new type of APP market: APP

storage and execution

9

Case Study 1

Hatch Entertainment in Finland
• A subsidiary of Angry Birds maker Rovio
• Providing streaming access to mobile games in

the same way as Netflix does for movies or
Spotify for music

• The beta version of Hatch’s cloud gaming app is
already available in 16 countries

• Infrastructure strategy
– Run Android software stack in containers on Qualcomm

Centriq 2400, a 48-core ARM processor
– Provide a large number of game instances per

server and keep per-instance server cost down

10

Case Study 2

• Redfinger in China
– A Baidu-invested startup
– Provide cloud virtual smartphone services

• Cloud gaming (bot) - online 24/7
– 5 million subscribers in 2016
– Service Charge

• $9.95 USD/per month for 8 GB Storage, 4 GB RAM
– Infrastructure strategy

• Hyperspace Cloud Android Smartphone platform:
running Android emulators in the cloud

Redfinger source from: https://www.cloudemulator.net/

11

How App Streaming Works

Virtual Android

Streaming
Server

• Bi-directional interactions between
device and cloud

• The Server Portal that handles user
authentication, mediation and virtual
machine deployment

• Through Event Server, touch and other
sensor data event are streamed up
from client device

• Display and audio are sent via
Streaming Server from cloud-based
Android instance to client

• Relay of intent & notification from
cloud to device Internet Messaging

Infrastructure

12

Requirements for App Streaming Infrastructure

• Virtualization of Android (framework + Linux)
– Hypervisor-based virtual machine
– OS-based container
– Function as a service, e.g., Lambda

• Thin client on smartphone
– Input: frame buffer, audio, intent and notification
– Output: sensor data and touch events

• App binary compatibility
• Low-latency streaming

13

ITRI’s Could-based APP Streaming Service

APP Streaming Portal APP Repository APP compatibility verification

• Access to streamed apps
• Location-based invocation
• Scalable streaming service

management

Virtual Android Smartphone Pool

• Low-latency frame
buffer streaming

• Physical sensor
redirection

Android-X86

Smartphone SOC Cluster

Streaming Server

Android Containerization
- When LXC Meets Android

15

Linux Container (LXC)

• An operating system-level virtualization method
for running multiple isolated Linux instances
(containers) on top of a single Linux kernel
– Namespace: objects
– Cgroup: resource usage
– Union filesystem: file sharing between host and containers

• Containers are more lightweight compared with
traditional VMs: 6 to 8 times as many containers
as VMs on the same hardware

16

Cgroup and Namespace
• cgroup: enables processes to form groups so as to limit their

visibility and resource usage
– Provides inter-container ioslation in terms of resource usage

• namespace: limits the resources that a group can see
– Provides inter-container isolation in terms of resource visibility/accessibility
– LXC creates a set of namespaces for a container before it starts

/dev/cpuset
└─ system-background

└── cpus (0-3)

Android creates cgroups for grouping
system background processes

Assign system background process on core 0-3

17

Layered Architecture of Android
• A modified version of the Linux kernel as the base

operating system
• Android run-time environment and libraries

– Android Runtime (ART) and Dalvik virtual machine

• Java API Framework
– Provides the basic functions of Android device

• Hardware Abstraction Layer (HAL)
– Provides standard interfaces that expose

device hardware capabilities to the higher-level
Java API framework.

• Mobile key applications
– Dialer, contact, browser, …

Source from: https://developer.android.com/guide/platform/

18

LXC Meets Android
• Fundamental issue: one vs. multiple Android instances
• Resource access and usage

– Android’s resource usage assignment for
process groups formed with cgroup

– Android’s use of SELinux
– Android’s permission settings for procfs (/proc) and sysfs(/sys)

• Device virtualization
– Binding of virtual and local/remote physical peripheral devices
– Fair sharing of local physical peripheral devices among host and containers

19

SELinux & Android
• Security-Enhanced Linux

– A Linux kernel security module supporting mandatory access controls (MAC)
• Android uses SELinux to enforce MAC over all processes

– Android defines complicated rules/security contexts to enforce mandatory
access control over all processes

• TODO: Container-aware SELinux
– Allows each container to have its own security

contexts and rules

file_contexts
/system/bin/surfaceflinger u:object_r:surfaceflinger_exec:s0
/dev/mali[0-9] u:object_r:gpu_device:s0

surfaceflinger.te
allow surfaceflinger gpu_device:chr_file { ioctl }; allow type:surfaceflinger to

access gpu resource

labeling gpu resources

labeling /system/bin/surfaceflinger

20

Access Permission Setting
• Symptom

– Kernel sysfs and procfs are “shared” between host and containers
– When an Android container shuts down, “/proc/sysrq-trigger” is touched, resulting in all

mount points becoming read-only

• Root cause: Default LXC permission setting is inadequate

• A patch to LXC
– Add “proc:android” control rule for Android

• TODO
– Need to more thoroughly examine Android’s accesses to kernel sysfs and procfs

LXC access control rules /proc /proc/sys /proc/sysrq-trigger note

proc:mixed r/w ro ro lxc essential

proc:rw r/w r/w r/w lxc essential

proc:android r/w r/w ro Android specific

21

Android’s CPU Resource Assignment
• CPU share assignment after Android 5.1.1

• CPU core binding after Android 7.1.2 (for BIG * 2 + LITTLE * 4)
– Associate specific CPU cores with a specific cgroup

cgroup system service process purpose

bg_non_interactive system_server
com.android.systemui

To keep UI smoothness at a certain satisfaction
level even when system is busy, system assigns
least 5% of CPU resources to this cgroup

top-app (cpus 0-5) foreground (cpus 0-5) system-background (cpus 0-3) background

Current active App system_server
com.android.systemui

surfaceflinger
servicemanager

Non-focused
Apps

22

Insufficient CPU Share for UI Services
• Purpose of cpu.shares

– Allows assigning a percentage of CPU time to a cgroup
• Android 5.1.1 usage

– Creating bg_non_interactive group for grouping system services
– In order to maintain fame rate at a specific level, Android assigns 5% of the

CPU resource to the bg_non_interactive group
• Problem with multiple Android containers

– As the # of containers increases, App UI update freq. becomes lower
• Root cause

– Containers also assign their system services to the bg_non_interactive group,
whose CPU share remains at 5%.

– Each container’s cpu share for bg UI services is < 5%. 16ms

UI Update (ms/per frame)
2 containers

system service process in bg_non_interactive cpu.shares

system_server, com.android.systemui 5%

system_server, com.android.systemui
system_server, com.android.systemui, ……

5% Cortex-A53 * 4
RAM: 3G

23

Enhancement to CPU Share Assignment

• Solution
– As the # of containers increases,

linearly increase the cpu share for
bg_non_interactive

• 5% * (1 + # of containers)

16ms

before

UI Update (ms/per frame), 2 containers

after

system service process cpu.shares

Host only system_server, com.android.systemui 5%

+ 1
container

system_server, com.android.systemui
system_server, com.android.systemui

10%

+ 2
containers

system_server, com.android.systemui
system_server, com.android.systemui
system_server, com.android.systemui

15%
Cortex-A53 * 4
RAM: 3G

24

Smaller No. of CPU Cores Than Needed
• Purpose of cpuset

– Assigns individual CPU cores to a specific cgroup
• Android 7.1.2 usage on Rockchip RK3399

– Essential Android cgroups
• top-app, foreground, system-background, background

• Symptom
– As # of containers increases, LITTLE cores are very busy, but BIG cores are not.

top-app (cpus 0-5) foreground (cpus 0-5) system-background (cpus 0-3) background

Current active
App

system_server
com.android.systemui

surfaceflinger
servicemanager

Non-focused
Apps

Core 0 (LITTLE) Core 1 (LITTLE)

Core 2 (LITTLE) Core 3 (LITTLE)

Core 4 (big)

Core 5 (big)

Cortex-A72 * 2
Cortex-A53 * 4

25

Enhancement to CPU Core Assignment
• Root cause

– Android’s cpuset usage and scheduler are designed for
a single Android instance

• When multiple Android instances run on a machine
– Allow system service processes to use BIG cores, or
– Assign each container a big core for its system service and normal processes

26

Summary
item (kernel) function lxc usage Android usage conflict
cgroup
cpu.shares

Specifying a relative share of
CPU time available to the tasks
in a cgroup

Grouping by different
containers

Grouping in Android
defined cgroups

yes

cgroup
cpuset

Assigning individual CPUs and
memory nodes to cgroups

Grouping by different
containers

Grouping in Android
defined cgroups

yes

SELinux Supporting access control
security policies for mandatory
access controls (MAC).

• SELinux container-awareness is missing
• Android defines complicated rules/security context to enforce

mandatory access control over all processes
• Currently, each container share the same security rules

Kernel procfs
(/proc) and
sysfs (/sys)

A pseudo file system provided
by the kernel that exports
information about various
kernel subsystems or process
state

lxc defines 2 types
access control
• mixed
• rw

Current lxc access control is
not enough for multi-
Android-instance usage

yes

27

Overhead of Android Containerization
• Platform: Google Nexus 7

– Qualcomm® Snapdragon™ S4 Pro 8064
Quad-Core, 1.5 GHz

• Minimal container interception overhead
– GPU Benchmark 3D on Google Nexus 7

– 3DRating for OpenGL ES 2.0

on host only on container only host + container (simultaneously)

Host Container

Score 11227 11024 5976 5356

FPS (avg) 41.24 40.68 21.17 19.39

on host
only

on container
only

Host + Container (simultaneously)

Host Container

Score 2560 2527 1588 1579

Android 6.x.x
GPU: Adreno 320
RAM: 2G

28

Scalability of Android Containerization

• Platform: Actions S900 (ARM SOC)
• Workload – Google YouTube

Android 5.1.1
CPU: Cortex-A53 * 4 @ 1.8G
GPU: Imagination Power VR G6230
RAM: 3G

 F
PS

of containers

29

Scalability of Android Containerization
• Platform: Intel® NUC

– Intel Core i7-6770HQ processor
• Workload – Seascape, an ocean renderer

using OpenGL ES 2.0 and specific GLSL
shader features

–

–

Android 7.1.2
CPU: QUAD CORE @ 2.6 ~ 3.5G
GPU: Intel Iris Pro Graphics 580
RAM: 32G

0
20
40
60
80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Av
er

ag
e

fp
s

of containers

30

Containerization vs. Virtualization
• Android x86 on KVM + Qemu
• Workload – Seascape, an ocean

render using OpenGL ES 2.0
and specific GLSL shader features

–

–

Android 7.1.2
CPU: QUAD CORE @ 2.6 ~ 3.5G
GPU: Intel Iris Pro Graphics 580
RAM: 32G

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Av
er

ag
e

fp
s

of VMs

Pure software rendering,
as Android x86 on KVM is
not able to access GPU

Device Virtualization

32

Android’s Device Control Model

• Binder is an Android-specific inter-process
communication (IPC) mechanism.

• Applications interact with h/w resource
through also binder IPC.

• This makes sharing hardware resources and
framework services among host and
containers easier

Source from: The Device Driver Structure for Android with Linux Kernel Driver and Android HAL, William W.-Y. Liang (梁文耀)

Bionics & share libs

Application

Android Framework

Service

Service
Managers

request connecting
to service

binder IPC

JNI
JNI Call

system call

Kernel

HAL

binder IPC

Android
Framework
Services

Surface Flinger Audio Flinger

Input Flinger

Camera

Power Mgmt. Location Manager
Window Manager

Application in container
(different namespace)

binder IPC

namespace-aware IPC binder

33

Selective Sharing of System Services
• How to selectively share system services among Android instances

– Namespace-aware IPC binder vs. Per-container binder
• Inspired by the Container Virtualization Adapted to Android project at the

Architecture Laboratory of Zhejiang University
– Which system services are sharable is configurable.
– Caller is aware of the container ID of callee.

34

Android’s Service Registration/Invocation

ServiceManagerService App

1. addService(name, service)

2. getService(name, service)

3. Service invocation through binder IPC transactions

35

Virtual Binder Architecture

• Virtual binder (driver) as
the wrapper of essential
Android binder

• It bridges service
registration and query
from containers

• It re-names the service
name for only un-shared
services

HostShared
Service

Manager Service App

Container 1
Service App

/dev/binder /dev/virtualbinder1

Virtual Binder Driver

Essential Android Binder Driver
Linux Kernel

addService(name, …)/
getService (name, …)

addService(name_con_id, …)/
getService (name_con_id, …)

36

Working of Virtual Binder – Shared Service

A Container-Based Virtualization Solution Adapted for Android Devices , Proceedings of IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, 2015

Virtual
Binder
Driver

Real
Binder
Driver

Host Con1
Space

Service
foo

Con2
Space

Service
Manager

Table

con1 registers
shared service
foo

register service
foo

register service
foo

con1 App request
service foo

request service
foo

request service
foo
return service
foo

return service
foo

return service
foo

Service invocation through binder IPC transactions

con1 App request
service foo

request service
foo

request service
foo
return service
foo

return service
foo

return service
foo

Service invocation through binder IPC transactions

foo

37

Working of Virtual Binder – Unshared Service

A Container-Based Virtualization Solution Adapted for Android Devices , Proceedings of IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, 2015

Virtual Binder Driver
re-nam

e unshared service
registration and request

Real
Binder
Driver

Host Con1
Space

Service
foo

Con2
Space

Service
foo

con1 registers
unshared service
foo

register service
foo_con1

register service
foo_con1

con1 App request
service foo

request service
foo_con1
return service
foo_con1

return service
foo

Service invocation through binder IPC transactions

Service
Manager

Table
foo_con1

Service invocation through binder IPC transactions

con1 App request
service foo

request service
foo_con2

request service
foo_con2
return service
foo_con2

return service
foo_con2

return service
foo

con2 registers
unshared service
foo

register service
foo_con2

register service
foo_con2

request service
foo_con1
return service
foo_con1

foo_con2

38

Two Use Cases of Android Containerization

•Local h/w peripheral on host and shared
among host and containers

•Essential mobile user experience: One
active container at a time

Virtual Smartphone in the Cloud

…

Smartphone Virtualization

•Touch events and sensor data are
relayed from client device to cloud

•Display and intent are
streamed from Android
instance in cloud to client
device

39

HW Platforms for Android Containers

• Smartphone SOC Cluster
–Run smartphone Apps natively

(Native ARM ISA)
–Dedicated GPU, Audio/Video h/w

Encoder/Decoder

•Perfect match for app
streaming workload

X86
Core

Linux Kernel (cgroup,
namesapce)

LXC Container

Android X86 1

GPUs
X86
Core

Android X86 n

• X86 Server Machine
–Android X86
– Powerful GPU

•Run smartphone Apps with ARM
native code result-in
–Binary translation overhead
–Compatibility issues

CPU CPU

CPU CPU

3 GB

• Smartphone
–Android
– Google Pixel 2

• BYOD security application

http://www.android-x86.org/

40

Comparison

Resource Framework Services Smartphone Cloud Deployment
Window Manager isolated isolated, individual virtual display for each container

Surface Flinger shared

Input Flinger
(Input Reader)

isolated, only
active container
consumes input

isolated, injecting touch and other sensor data
streamed from user device

Audio Flinger shared isolated, providing fake audio device for each
container, which streams voice over the Internet

Camera Service
(“media.camera”))

shared isolated, redirect from client to cloud

Intent/
Notification

Intent/Notification
service

isolated Isolated, private channel between client and cloud
Android through Internet cloud messaging services

Sharing of peripheral devices is mostly achieved by sharing controlling system services

Android Containerization for
Smartphone Virtualization

42

Containerizing Android for Phone

• Android as the host OS
• Peripherals and framework services are shared among host and Containers

– Primary display is shared between and host and containers, switching between host and
active container

Linux Kernel & Drivers
LXC Container (Cgroups, Namespaces)

SELinux

Host Android

Shared
Framework
Services

Service Manager Surface Flinger
Audio Flinger

LXC
 Tools

Netfilter,
Virtual Ethernet Bridging

iptablesPower Mgmt. ….
Camera

Virtual Device
Drivers

Window Manager Activity Manager

Virtual Devices
binder

Window Manager Activity Manager

N-th Android Container

43

Shared SurfaceFlinger
• Sharing of SurfaceFlinger decreases resource usage
• Each container has its own window manager
• A single SurfaceFlinger instance runs on the host

– Maintains a separate list of layers for each Android container by grouping
layers according to their container ID

Linux Kernel + LXC + Drivers

Surface Flinger buffer

Host Android

Shared Framework
Services Surface Flinger

Window Manager

Android n

Window Manager

44

Switching Display between Containers

• Layers belonging to different Android
containers are stored in SurfaceFlinger

• SurfaceFlinger groups layers according to
their container ID

Assign layers of host container to
layersSortedByZ of primary display

physical display

compose

Assign layers of container 1 to
layersSortedByZ of primary display

physical display

compose

Android Containerization for
Virtual Smartphone in the Cloud

46

Containerizing Android for Cloud Server

• Host: Debian rootfs with Android’s Kernel
– Lightweight host with full functional Linux utilities to manage

Android containers running on a cloud server

• Each Android container has its own Android framework and services
• Configurable virtual display for each container and its remote client
• Virtual device remoting (sensors, audio, camera, location)

Android Linux Kernel & Drivers
LXC Container (Cgroups, Namespace)

SELinux

Virtual Device
Drivers

Host Debian

LXC Tools

Netfilter,
Virtual Ethernet Bridging

iptables

Android Container

Virtual
Devices

binder audio

….

Android
Framework
Services

Service Manager Surface Flinger
Audio Flinger

Window Manager Activity Manager
Camera

ARMX86

47

ITRI ARM SOC Cluster

ARM node*35
(Actions S900 SOM)

LED Indicator light*2
power & network

Backplane Board
(power supply, Ethernet port, & MCU)

LAN Switch
(1G*8 + 10G*2)

PSU
500W 1U

BMC
for SOM management

Carrier Board*5, 7 SOM per CB
(4 on top side, 3 on back)

• 1U chassis system
• Total power

consumption is
< 160W

48

Carrier Board and System on a Module

• 7 node per carrier board
(4 on top side, 3 on back)

• 1G USB-Ethernet RT8153 * 7
• 8-port 1GbE switch RTL8370N
• Connector for SOMs; Goldfingers to

Backplane board

Carrier Board

•Actions S900
•Quad-core 64-bit Cortex-A53 @1.8GHz

•Video Encode
•H.264 baseline profile, up to 1080p@60fps

•3G LPDDR3; 8GB eMMC
•GPU: Imagination Power VR G6230
•USB 3.0 for external 1GbE
•Connect to Carrier Board

SOM

49

Networking in ITRI ARM SOC Cluster
REAR VIEW

External net 10G * 2

BMC

LAN Switch
(1G*8 + 10G*2)

1G * 1 for BMC

Backplane Board
(1G Ethernet port for each CB)

S900
SOM

S900
SOM

RTL
8153B

RTL
8153B

USB 3.0 USB 3.0

REALTEC
RTL8370N

8-port 1GbE
switch

* 7

To LAN
Switch

Carrier Board Block Diagram
1G 1G 1G

USB 3.0 to
Ethernet Gigabit

50

Manageability for ITRI ARM SOC Cluster

• Diskless boot for host and containers
• Container lifecycle management

– A container can be selectively
launched and shut-down on any node

• Configurable container display
• Baseboard management controller (BMC)

– Monitor power status and temperature
– Remote power control
– Power policy setting

DHCP Server

TFTP Server

iSCSI Target

boot.ini
DTB
kernel image
ramfs (rootfs)

system partition
data partition

system partition
data partition

system partition
data partition

uboot

BMC

51

Comparison of APP Streaming Platforms

• ARM:ARM Cortex-A53,4 cores @ 1.7GHz, RAM: 3GB, 3 containers per node
• X86: Intel Xeon, 8 cores @ 3.5GHz RAM: 64GB, > 40 containers

APPs
Compatibilities

Per Android
Instance Cost

Per Android Instance
Power Consumption

X86 + Android Virtual Machine ~ 60% ~$370 USD < 30W (average)
X86 + Android Container ~ 70% ~$185 USD < 15W (average)
ARM SOC Cluster + Android
Virtual Machine

> 90% ~$56USD < 5W

ARM SOC Cluster + Android
Container

> 90% ~$28 USD < 2.5W

Conclusions

53

Conclusions
• Ability to run Android applications in cloud has many applications.

– App streaming and Virtual Mobility Infrastructure (VMI).
• Android containerization reduces the per-Android-instance cost

and enables GPU sharing.
• Using ARM SOC for smartphones to build an Android application

cluster solves the binary compatibility problem and significantly
improves the cost of scalability.

• Future work
– Installable Android Container to non-Android Linux distributions
– Serverless computing model for running Android applications in the cloud

54

Android Containerization on github

• https://github.com/clondroid
• In January, 2018, CBA team

released “CLONDROID”
• Enabling multiple tailored Android

containers to run on a Google Pixel
XL 2 phone

Android Container on
Google Pixel 2

55

CBA Team Members

Tzi-cker Chiueh,
General Director of ICL/ITRI

Victor Hsu Tian-Jian Wu Te-Yu Tsai I-Fan WangIan TsaiSting Cheng

Thank & You!

http://www.android-x86.org/

Appendix

58

Comparisons – Design Considerations (2)

resource phone cloud deployment
• shared between and host and containers
• switch between host and containers

• individual virtual display for each container
• stream display content over the Internet

• shared between and host and containers
• input goes to active one

• touch and other sensor data is streamed up
from user device to containers

• shared between and host and containers
• exclusive or non-exclusive

• individual virtual device for each containers
• stream voice content over the Internet

• shared between and host and containers
• exclusive

• Camera re-direction

Intent/
Notification

• isolated in each container space • Intent/Notification re-direction

Its all about h/w resource sharing and isolation

59

BMC
• Commercial BMC chip in x86 world does NOT fit in ARM Cluster
• S/W

– Facebook OpenBMC for Yosemite
• Yosemite consists of modular chassis for x86 microservers, which is

architecturally similar to ARM cluster
• H/W

– BBG controller board
• Features

– Web API for power control and power policy setting
– Sensors
– FAN Control
– Watchdog

	投影片編號 1
	Everybody Wants to Make APPs
	But APP Fatigue Is Apparent
	APP Testing and Security
	投影片編號 5
	APP Streaming
	 Tightened BYOD Security
	Run an APP without Downloading it
	Case Study 1
	Case Study 2
	How App Streaming Works
	 Requirements for App Streaming Infrastructure
	ITRI’s Could-based APP Streaming Service
	投影片編號 14
	Linux Container (LXC)
	Cgroup and Namespace
	Layered Architecture of Android
	LXC Meets Android
	SELinux & Android
	Access Permission Setting
	Android’s CPU Resource Assignment
	Insufficient CPU Share for UI Services
	Enhancement to CPU Share Assignment
	Smaller No. of CPU Cores Than Needed
	Enhancement to CPU Core Assignment
	Summary
	Overhead of Android Containerization
	Scalability of Android Containerization
	Scalability of Android Containerization
	Containerization vs. Virtualization
	投影片編號 31
	Android’s Device Control Model
	Selective Sharing of System Services
	Android’s Service Registration/Invocation
	Virtual Binder Architecture
	Working of Virtual Binder – Shared Service
	Working of Virtual Binder – Unshared Service
	Two Use Cases of Android Containerization
	HW Platforms for Android Containers
	Comparison
	投影片編號 41
	Containerizing Android for Phone
	Shared SurfaceFlinger
	Switching Display between Containers
	投影片編號 45
	Containerizing Android for Cloud Server
	ITRI ARM SOC Cluster
	Carrier Board and System on a Module
	Networking in ITRI ARM SOC Cluster
	Manageability for ITRI ARM SOC Cluster
	Comparison of APP Streaming Platforms
	投影片編號 52
	Conclusions
	Android Containerization on github
	CBA Team Members
	投影片編號 56
	投影片編號 57
	Comparisons – Design Considerations (2)
	BMC

