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Concept of Transactional Updates



4

What is a Transactional Update?

An update that
● is atomic

– Either fully applied, or not applied at all

– Update does not influence the running system

● can be rolled back
– A failed or incompatible update can be quickly discarded to restore the previous system 

condition
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Implementations

Common concepts shared between all distributions:
● Read-only root file system
● Transactional / atomic updates
● Often designed for large deployments (Clouds)
● Minimal base system
● Automatic updates / reboots
● Integrity protection

Examples:
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Transactional Updates with Btrfs and RPM
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Snapper

● Snapshotting tool
● Called upon invocation of system tools (e.g. zypper or YaST)
● Uses Btrfs snapshot mechanism (but also supports ext4 and LVM)
● Available for a variety of other distributions
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Updates with snapper

current
/

Backup
/ (pre)

1.

2.

Backup
/ (post)

3.

Active system

1. Create “pre” snapshot
2. Update the current system
3. Create “post” snapshot

Update is modifying the currently active 
file system
Restarts services immediately
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Updates with snapper

A Transactional Update is an update that
● is atomic

– Either fully applied, or not applied at all

– Update does not influence the running system

● can be rolled back
– A failed or incompatible update can be quickly discarded to restore the previous system 

condition
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Updates with transactional-update

● Using zypper & snapper in the background
● Also creates two snapshots

– Pre: Backup of the current system

– Post: Working snapshot
● Will not touch the currently running system
● Sets “Post” snapshot as new default btrfs root file system
● Changes applied on reboot
● If something goes wrong during the update nothing will be changed at all
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Updates with transactional-update

current
/

Backup
/ (pre)

1. new
/ (post)

2.

3.

1. Snapshot of current system

2. Create new target snapshot
3. Update system and set as default for next boot

Current root file system is not modified

Active system
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Live demo
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Live Demo



Cheat Sheet
Transactional Updates

List repositories
zypper lr -dzypper lr -d

Refresh repositories
zypper refzypper ref

Update installed packages
transactional-update uptransactional-update up

Perform a distribution update
transactional-update duptransactional-update dup

Install package(s)
transactional-update pkg in <name>transactional-update pkg in <name>

Update package(s)
transactional-update pkg up <name>transactional-update pkg up <name>

Remove package(s)
transactional-update pkg rm <name>transactional-update pkg rm <name>

List snapshots
snapper listsnapper list

Mark snapshots for removal by snapper
transactional-update cleanuptransactional-update cleanup

View default subvolume
btrfs subvolume get-default /btrfs subvolume get-default /

Open shell
transactional-update shelltransactional-update shell

Request reboot
transactional-update reboottransactional-update reboot

System rollback
transactional-update rollback [number]transactional-update rollback [number]



  

Pitfalls

● Snapshots will be branched from the current system
→ snapshots will not contains the previous snapshot’s contents if 
the system hasn’t been rebooted!

● When using transactional-update on a read-write system
→ don’t forget to reboot your system before making any changes 
to the root file system!
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A deeper look
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Handling of special directories

Writable directories on an otherwise read-only system:
● /var
● /etc
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/var handling/var handling

● /var is a special directory as it contains variable data
● has to have read-write permissions

● Cannot be rolled back
● A rollback would usually delete production data (e.g. your new orders in your 

database or your Docker images)
● Typically stored on a separate subvolume or partition
● /var will not be mounted into the update snapshot, i.e. packages 

can not modify it (but we have some special handling for plain files 
and directories)
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/etc handling

● On read-only systems /etc has to be writable
● Mounted as an overlay file system
● Overlay stored in /var

● On snapshot creation /etc contents will be synced into root file 
system
● Configuration is part of the snapshot

● On reboot into new snapshot delete overlay contents
● Only files modified after snapshot creation will remain
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Other subvolumes

● /opt, /var/log and /boot/grub2 will be bind mounted into the update 
snapshot

● Everything else, including /srv, won’t!

➔ Packages have to follow the FHS and packaging guidelines
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Helper applications: health-checker

● Add your own checker scripts to check for system consistency
● Automatic rollback if checks fail
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Helper applications: rebootmgr

● transactional-update.timer triggers daily update including reboot
● rebootmgr manages reboot (e.g. in maintenance windows or 

synchronized via etcd)
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What else is worth noting?

● Works with any standards-compliant RPM package
● General purpose tool: Especially useful for servers and clusters
● Fast snapshot switching
● Sane /etc and /var handling
● Only works with BTRFS root file systems

● Configuration file: /etc/transactional-update.conf (template in 
/usr/etc/transactional-update.conf)

● Snapper will clean up old snapshots
● transactional-update is the only way to update a read-only system
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Alternatives
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What’s next?
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Availability

openSUSE KubicSUSE CaaS Platform openSUSE Tumbleweed
openSUSE Leap 15

(“Transactional Server” role)
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Future development

● Integration into SLES 15
● Integrate transactional-update as zypper plugin
● IMA / EVM support for system verification / integrity
● Fix RPM packages with scripts modifying /var and /srv
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