
Transactional Updates
with Btrfs and RPM

Ignaz Forster

Research Engineer

iforster@suse.com

2

TOC

● Concept of transactional updates
● Transactional updates with Btrfs and RPM
● Live demo (openSUSE Kubic)
● A deeper look
● Alternatives
● What’s next?

3

Concept of Transactional Updates

4

What is a Transactional Update?

An update that
● is atomic

– Either fully applied, or not applied at all

– Update does not influence the running system

● can be rolled back
– A failed or incompatible update can be quickly discarded to restore the previous system

condition

5

Implementations

Common concepts shared between all distributions:
● Read-only root file system
● Transactional / atomic updates
● Often designed for large deployments (Clouds)
● Minimal base system
● Automatic updates / reboots
● Integrity protection

Examples:

6

Transactional Updates with Btrfs and RPM

7

Snapper

● Snapshotting tool
● Called upon invocation of system tools (e.g. zypper or YaST)
● Uses Btrfs snapshot mechanism (but also supports ext4 and LVM)
● Available for a variety of other distributions

8

Updates with snapper

current
/

Backup
/ (pre)

1.

2.

Backup
/ (post)

3.

Active system

1. Create “pre” snapshot
2. Update the current system
3. Create “post” snapshot

Update is modifying the currently active
file system
Restarts services immediately

9

Updates with snapper

A Transactional Update is an update that
● is atomic

– Either fully applied, or not applied at all

– Update does not influence the running system

● can be rolled back
– A failed or incompatible update can be quickly discarded to restore the previous system

condition

10

Updates with transactional-update

● Using zypper & snapper in the background
● Also creates two snapshots

– Pre: Backup of the current system

– Post: Working snapshot
● Will not touch the currently running system
● Sets “Post” snapshot as new default btrfs root file system
● Changes applied on reboot
● If something goes wrong during the update nothing will be changed at all

11

Updates with transactional-update

current
/

Backup
/ (pre)

1. new
/ (post)

2.

3.

1. Snapshot of current system

2. Create new target snapshot
3. Update system and set as default for next boot

Current root file system is not modified

Active system

12

Live demo

13

Live Demo

Cheat Sheet
Transactional Updates

List repositories
zypper lr -dzypper lr -d

Refresh repositories
zypper refzypper ref

Update installed packages
transactional-update uptransactional-update up

Perform a distribution update
transactional-update duptransactional-update dup

Install package(s)
transactional-update pkg in <name>transactional-update pkg in <name>

Update package(s)
transactional-update pkg up <name>transactional-update pkg up <name>

Remove package(s)
transactional-update pkg rm <name>transactional-update pkg rm <name>

List snapshots
snapper listsnapper list

Mark snapshots for removal by snapper
transactional-update cleanuptransactional-update cleanup

View default subvolume
btrfs subvolume get-default /btrfs subvolume get-default /

Open shell
transactional-update shelltransactional-update shell

Request reboot
transactional-update reboottransactional-update reboot

System rollback
transactional-update rollback [number]transactional-update rollback [number]

Pitfalls

● Snapshots will be branched from the current system
→ snapshots will not contains the previous snapshot’s contents if
the system hasn’t been rebooted!

● When using transactional-update on a read-write system
→ don’t forget to reboot your system before making any changes
to the root file system!

16

A deeper look

17

Handling of special directories

Writable directories on an otherwise read-only system:
● /var
● /etc

18

/var handling/var handling

● /var is a special directory as it contains variable data
● has to have read-write permissions

● Cannot be rolled back
● A rollback would usually delete production data (e.g. your new orders in your

database or your Docker images)
● Typically stored on a separate subvolume or partition
● /var will not be mounted into the update snapshot, i.e. packages

can not modify it (but we have some special handling for plain files
and directories)

19

/etc handling

● On read-only systems /etc has to be writable
● Mounted as an overlay file system
● Overlay stored in /var

● On snapshot creation /etc contents will be synced into root file
system
● Configuration is part of the snapshot

● On reboot into new snapshot delete overlay contents
● Only files modified after snapshot creation will remain

20

Other subvolumes

● /opt, /var/log and /boot/grub2 will be bind mounted into the update
snapshot

● Everything else, including /srv, won’t!

➔ Packages have to follow the FHS and packaging guidelines

21

Helper applications: health-checker

● Add your own checker scripts to check for system consistency
● Automatic rollback if checks fail

22

Helper applications: rebootmgr

● transactional-update.timer triggers daily update including reboot
● rebootmgr manages reboot (e.g. in maintenance windows or

synchronized via etcd)

23

What else is worth noting?

● Works with any standards-compliant RPM package
● General purpose tool: Especially useful for servers and clusters
● Fast snapshot switching
● Sane /etc and /var handling
● Only works with BTRFS root file systems

● Configuration file: /etc/transactional-update.conf (template in
/usr/etc/transactional-update.conf)

● Snapper will clean up old snapshots
● transactional-update is the only way to update a read-only system

24

Alternatives

29

What’s next?

30

Availability

openSUSE KubicSUSE CaaS Platform openSUSE Tumbleweed
openSUSE Leap 15

(“Transactional Server” role)

31

Future development

● Integration into SLES 15
● Integrate transactional-update as zypper plugin
● IMA / EVM support for system verification / integrity
● Fix RPM packages with scripts modifying /var and /srv

Unpublished Work of SUSE LLC. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their
assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated,
abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The
development, release, and timing of features or functionality described for SUSE products remains at the sole discretion
of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this
presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-
party trademarks are the property of their respective owners.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 29
	Folie 30
	Folie 31
	Folie 40
	Folie 41

