
The State of Rootless Containers

Aleksa Sarai / SUSE
Akihiro Suda / NTT

@lordcyphar
@_AkihiroSuda_

Who are we?
Aleksa Sarai
• Senior Software Engineer

at SUSE.

• Maintainer of runc and
several other Open
Container Initiative
projects.

Akihiro Suda
• Software engineer at NTT

(the largest telco in Japan)

• Maintainer of Moby
(former Docker Engine),
BuildKit, containerd, and
etc...

Agenda
• What are Rootless Containers? What are they for?

– User Namespaces
– Network Namespaces
– Mount Namespaces
– cgroups
– Current adoption status

• Demo: “Usernetes”

Introduction to Rootless Containers
• Most container runtimes* require root privileges.

– ... and lack sufficient protections against privilege escalation.
• What can you do if you don't have (and can't get) root privileges?

– (Computing clusters in universities for example.)

• Rootless containers are containers that can be created and managed
without privileged codepaths (some caveats apply).
– Requires quite a few kernel technologies, as well as some

userspace tricks...

“The Security Argument”
Another justification is to avoid privileged codepaths entirely:
• No privilege escalation if you never actually have privileges!

docker:CVE-2014-9357 docker:CVE-2015-3629 docker:CVE-2015-3627
• Configuration mistakes cannot escalate privileges above the original

user. docker:CVE-2016-8867

• Path traversal vulnerabilities only affect paths the user can already
access. docker:CVE-2015-3630 k8s:CVE-2017-1002101 k8s:CVE-2017-1002102
docker:CVE-2018-15664

(This is not a panacea, the kernel features we use have had security flaws
in the past -- especially user namespaces. But you can also restrict their
usage inside rootless containers!)

User Namespaces
• The key component of rootless containers.

– Map UIDs/GIDs in the guest to different UIDs/GIDs on the host.
– Unprivileged (on the host) users can have (limited) root inside!

• Root has UID 0 and full capabilities, but obvious restrictions apply.
– Inaccessible files, inserting kernel modules, rebooting, ...

• Unprivileged users can map only their own UID/GID (to itself or root).
– We need something better to be able to use package managers.

User Namespaces
• To allow multi-user mappings, shadow-utils now provides newuidmap

and newgidmap (packaged by most distributions).
– SETUID binaries writing mappings configured in /etc/sub[ug]id

/etc/subuid:
 1000:420000:65536

/proc/42/uid_map:
 0 1000 1

1 420000 65536

Provided by the admin (real root)

User can configure map UIDs after
unsharing a user namespace

User Namespaces
Problems:
• SETUID binary can be dangerous

– newuidmap & newgidmap had two CVEs so far:
• CVE-2016-6252 (CVSS v3: 7.8): integer overflow issue
• CVE-2018-7169 (CVSS v3: 5.3): supplementary GID issue

• Hard to maintain subuid & subgid
– Having 64K sub-IDs should be ok for most cases, but to allow

nesting user namespaces, an enormous number of sub-IDs would
be needed
• Potential sub-ID (up to 4G entries) starvation, especially in

LDAP environments with many users

User Namespaces
Alternative way: Single-mapping mode + Ptrace + Xattr
• Single-mapping mode does not require newuidmap/newgidmap
• Ptrace can emulate fake sub-UIDs/sub-GIDs

– No need to hook all syscalls (unlike gVisor)
– Seccomp could be used as well in future

• Xattr (extended file attributes) can be used for persistent chown(2)
emulation (see user.rootlesscontainers).

Free from potential newuidmap/newgidmap CVEs
• But slow and no real isolation across sub-UIDs/sub-GIDs
• Almost adequate for image building purpose, but not panacea

Network Namespaces
An unprivileged user can create network namespaces by acquiring the root
in a user namespace, but cannot set up the veth pair across the parent and
the child (i.e. No internet connection)

• Note: isolating network namespace is not mandatory (but no iptables, bridges, no namespaced abstract
UNIX sockets)

The Internet

Host (“parent”)

UserNS + NetNS (“child”)

NetNS NetNS

Network Namespaces
Prior work: LXC uses SETUID binary (lxc-user-nic) for setting up the
veth pair across the parent and the child

Problem: SETUID binary can be dangerous!
• CVE-2017-5985 (CVSS v3: 3.3): netns privilege escalation
• CVE-2018-6556 (NEW! disclosure: 8/10/2018): arbitrary file open(2)

Network Namespaces
Our approach: use usermode network (“Slirp”) with a TAP device
• Completely unprivileged

The Internet

Host

UserNS + NetNS

NetNS NetNS

TAP

“Slirp” TAPFD

“sendfd” (SCM_RIGHTS cmsg)

Network Namespaces
Benchmark of several “Slirp” implementations:

• slirp4netns (our implementation based on QEMU) is the fastest because
it avoids copying packets across the namespaces

MTU=1500 MTU=4000 MTU=16384 MTU=65520

vde_plug 763 Mbps Unsupported Unsupported Unsupported

VPNKit 514 Mbps 526 Mbps 540 Mbps Unsupported

slirp4netns 1.07 Gbps 2.78 Gbps 4.55 Gbps 9.21 Gbps
cf. rootful veth 52.1 Gbps 45.4 Gbps 43.6 Gbps 51.5 Gbps

Benchmark: iperf3 (netns -> host), measured on Travis CI

See rootless-containers/rootlesskit#12

https://github.com/rootless-containers/rootlesskit/pull/12

Network Namespaces
Setting up /etc/resolv.conf (without chroot) is mess…
• resolv.conf may point to 127.0.0.X (for systemd-resolved /

dnsmasq)
• But 127.0.0.X DNS is unaccessible from network namespaces
• We can use bind-mount for replacing resolv.conf, but it is often

forcibly unmounted by systemd-resolved / NetworkManager
Solution: isolate /etc
• Mount an empty tmpfs on /etc
• Create the new resolv.conf on the new /etc
• Create symlinks for the real /etc/*, except resolv.conf

Root Filesystems

Your container root filesystem has to live somewhere. Many filesystem
features used by “rootful” container runtimes aren’t available.
• Ubuntu allows overlayfs in a user namespace, but this isn't supported

upstream (due to security concerns).
• Btrfs allows unprivileged subvolume management, but requires

privileges to set it up beforehand.
• Devicemapper is completely locked away from us.

Root Filesystems

A “simple” work-around is to just extract images to a directory!
• It works … but people want storage deduplication.

Alternatives:
• Reflinks to a "known good" extracted image (inode exhaustion).

– (Can use on XFS, btrfs, ... but not ext4 family.)
• Unprivileged userspace overlayfs using FUSE (Linux >=4.18).

(Container images themselves have significant flaws as well.)

cgroups
/sys/fs/cgroup is a roadblock to many features we want in rootless
containers (accounting, pause and resume, even getting a list of PIDs!).
• By default completely owned by root (and managed by systemd).

There are a variety of workarounds, with various downsides:
• cgroup namespaces (with nsdelegate) only work in cgroupv2.
• LXC’s pam_cgfs requires installation of a PAM module (and only works

for logged-in users).

Current adoption
status

runc
Fully supported since 1.0.0-rc4 (merged March 2017).
• Some minor features don’t work because of outside restrictions.
• Originally only supported completely-unprivileged (no funny

business) mode.
With 1.0.0-rc5, it supports “partially privileged” mode:
• /sys/fs/cgroups can be used if they are set up to be writable.
• Multi-user mappings are supported if they are set up with

/etc/sub[ug]id.
CLONE_NEWCGROUP still not supported (but nsdelegate is v2-only).

umoci and orca-build
umoci is the original generic OCI image manipulation tool.
• https://github.com/openSUSE/umoci
• Supports extraction (unpack) and layer generation (repack).
• It has supported rootless mode since the beginning.

– Emulates CAP_DAC_OVERRIDE with recursive chmod.
– Supports persistent xattr-based chown(2) emulation.

orca-build was one of the first dameon-less OCI (Dockerfile) builders.
• Built on top of umoci, skopeo, and runc.
• Supports rootless building, and is only 500 lines of Python.
• Currently have plans to merge into umoci as a contrib/ wrapper.

https://github.com/openSUSE/umoci

BuildKit and img
• BuildKit: next-generation backend for `docker build`

– Integrated to Docker since v18.06, but can be also used as a
standalone daemon, with support for the rootless mode

– Uses the host network namespace at the moment
• Not a huge problem when BuildKit itself is containerized

– Rootless BuildKit has been used in OpenFaaS cloud

• img: rootless and daemonless image builder based on BuildKit, by
Jessie Frazelle
– Same as BuildKit but daemonless

Kaniko
• Google’s unprivileged container image builder
• Different from our approach

– Kaniko itself needs to be executed in a container (without
--privileged)

– Dockerfile RUN instructions are executed without creating nested
containers inside the Kaniko container
• A RUN instruction gains the root in the Kaniko container

• Seems inappropriate for malicious Dockerfiles due to the lack of isolation
– Potential cloud credential leakage: #106

https://github.com/GoogleContainerTools/kaniko/issues/106

Docker (Moby) & Podman
• Docker / Moby

– Rootless mode is being proposed: #37375
– Supports both slirp4netns and VPNKit for network isolation
– Even Swarm-mode works! (except overlay NW atm)

• Podman: Red Hat’s daemonless replacement for docker
– Already supports rootless mode
– Uses slirp4netns (Thanks Giuseppe Scrivano!)

https://github.com/moby/moby/issues/37375

Kubernetes & CRI runtimes
• kubelet, kube-proxy, and dockershim require a bunch of hacks for

running without cgroups and sysctl
– No hack needed for kube-apiserver and kube-scheduler
– POC available; Planning to propose KEP to SIG-node soon

• Alternative CRI runtimes:
– CRI-O: Already supports rootless mode
– containerd: rootless mode is on plan

• TODO: stability improvement & multi-node network

“Usernetes”
Experimental binary distribution of rootless Moby (Docker), CRI-O and
Kubernetes, installable under $HOME without mess
https://github.com/rootless-containers/usernetes

$ tar xjvf usernetes-x86_64.tbz
$ cd usernetes
$./run.sh

$./kubectl.sh run -it --image..

https://github.com/rootless-containers/usernetes

Demo: “Usernetes”

