S OPEN SOURCE SUMMIT

The State of Rootless Containers

Aleksa Sarai / SUSE
Akihiro Suda / NTT

@lordcyphar L E‘Eﬁﬁ%ﬁ
@_AkihiroSuda_

Who are we?

Aleksa Sarai Akihiro Suda
« Senior Software Engineer - Software engineer at NTT
at SUSE. (the largest telco in Japan)
* Maintainer of runc and * Maintainer of Moby
several other Open (former Docker Engine),
Container Initiative BuildKit, containerd, and
projects. etc...

Ssuse @ NTT] Linux

« What are Rootless Containers? What are they for?
— User Namespaces
— Network Namespaces
— Mount Namespaces
— cgroups
— Current adoption status
* Demo: “Usernetes”

Csuse (O NTT] iinux

Introduction to Rootless Containers

« Most container runtimes™ require root privileges.
— ... and lack sufficient protections against privilege escalation.
- What can you do if you don't have (and can't get) root privileges?
— (Computing clusters in universities for example.)

* Rootless containers are containers that can be created and managed
without privileged codepaths (some caveats apply).
— Requires quite a few kernel technologies, as well as some
userspace tricks...

fsuse @ NTT] iinux

“The Security Argument”

Another justification is to avoid privileged codepaths entirely:

* No privilege escalation if you never actually have privileges!
docker:CVE-2014-9357 docker:CVE-2015-3629 docker:CVE-2015-3627

- Configuration mistakes cannot escalate privileges above the original
user. docker:CVE-2016-8867

- Path traversal vulnerabilities only affect paths the user can already

dCCeSS. docker:CVE-2015-3630 k8s:CVE-2017-1002101 k8s:CVE-2017-1002102
docker:CVE-2018-15664

(This is not a panacea, the kernel features we use have had security flaws
in the past -- especially user namespaces. But you can also restrict their
usage inside rootless containers!)

fsuse @ NTT] iinux

User Namespaces

« The key component of rootless containers.
— Map UIDs/GIDs in the guest to different UIDs/GIDs on the host.
— Unprivileged (on the host) users can have (limited) root inside!

« Root has UID 0 and full capabilities, but obvious restrictions apply.
— Inaccessible files, inserting kernel modules, rebooting, ...

« Unprivileged users can map only their own UID/GID (to itself or root).
— We need something better to be able to use package managers.

fsuse @ NTT] iinux

User Namespaces

* To allow multi-user mappings, shadow-utils now provides newuidmap

and newgidmap (packaged by most distributions).
— SETUID binaries writing mappings configured in /etc/sub[ug]id

/etc/subuid: Provided by the admin (real root)
1000:420000:065536

/proc/42/uid map: User can configure map UIDs after
0 1000 1 unsharing a user namespace

1 420000 65536

THE

L LINUX

FOUNDATION

User Namespaces

Problems:

- SETUID binary can be dangerous
— newuidmap & newgidmap had two CVEs so far:
« CVE-2016-6252 (CVSS v3: 7.8): integer overflow issue
« CVE-2018-7169 (CVSS v3: 5.3): supplementary GID issue
* Hard to maintain subuid & subgid
— Having 64K sub-IDs should be ok for most cases, but to allow
nesting user namespaces, an enormous number of sub-IDs would
be needed
« Potential sub-ID (up to 4G entries) starvation, especially in
LDAP environments with many users

fsuse @ NTT] iinux

User Namespaces

Alternative way: Single-mapping mode + Ptrace + Xattr

« Single-mapping mode does not require newuidmap/newgidmap

« Ptrace can emulate fake sub-UIDs/sub-GIDs
— No need to hook all syscalls (unlike gVisor)
— Seccomp could be used as well in future

- Xattr (extended file attributes) can be used for persistent chown (2)
emulation (see user.rootlesscontainers).

Free from potential newuidmap/newgidmap CVES

« But slow and no real isolation across sub-UIDs/sub-GIDs
« Almost adequate for image building purpose, but not panacea

fsuse @ NTT] iinux

Network Namespaces

An unprivileged user can create network namespaces by acquiring the root
In @ user namespace, but cannot set up the veth pair across the parent and
the child (i.e. No internet connection)

Note: isolating network namespace is not mandatory (but no iptables, bridges, no namespaced abstract

UNIX sockets)

The Internet

Host (parent”)

___8___

UserNS + NetNS ¢child”)

NetNS NetNS

L

THE

LINUX

FOUNDATION

Network Namespaces

Prior work: LXC uses SETUID binary (1xc-user—-nic) for setting up the
veth pair across the parent and the child

Problem: SETUID binary can be dangerous!

« CVE-2017-5985 (CVSS v3: 3.3): netns privilege escalation
« CVE-2018-6556 (NEW! disclosure: 8/10/2018): arbitrary file open (2)

fsuse @ NTT] iinux

Network Namespaces

Our approach: use usermode network (“Slirp”) with a TAP device

« Completely unprivileged

The Internet

Host

“Slirp” TAPFD

UserNS + NetNS

TAP

NetNS NetNS

Suse ONTT

“sendfd” (SCM RIGHTS cmsg)

THE

L LINUX

FOUNDATION

Network Namespaces

Benchmark of several “Slirp” implementations:
MTU=1500 MTU=4000 MTU=16384 MTU=65520
vde_plug 763 Mbps
VPNKit 514 Mbps 526 Mbps 540 Mbps

slirpdnetns 1.07 Gbps 2.78 Gbps 4.55 Gbps \ 9.21 Gbps‘

 slirp4netns (our implementation based on QEMU) is the fastest because
it avoids copying packets across the namespaces
ﬁ ® NTT Benchmark: iperf3 (netns -> host), measured on Travis Cl L IT_HlENUX

SUSE . . FOUNDATION
. See rootless—-containers/rootlesskit#12

https://github.com/rootless-containers/rootlesskit/pull/12

Network Namespaces

Setting up /etc/resolv.conf (without chroot) is mess...
* resolv.conf maypointto 127.0.0.X (for systemd-resolved /

dnsmasq)
« But127.0.0.x DNS is unaccessible from network namespaces

« We can use bind-mount for replacing resolv.conf, but it is often
forcibly unmounted by systemd-resolved / NetworkManager

Solution: isolate /etc
* Mount an empty tmpfs on /etc
* Create the new resolv.conf onthe new /etc
* Create symlinks for the real /etc/*, except resolv.conf

THE

fsuse @ NTT] iinux

Root Filesystems

Your container root filesystem has to live somewhere. Many filesystem
features used by “rootful” container runtimes aren’t available.

- Ubuntu allows overlayfs in a user namespace, but this isn't supported
upstream (due to security concerns).

- Btrfs allows unprivileged subvolume management, but requires
privileges to set it up beforehand.

« Devicemapper is completely locked away from us.

fsuse @ NTT] iinux

Root Filesystems

A “simple” work-around is to just extract images to a directory!
* It works ... but people want storage deduplication.
Alternatives:

+ Reflinks to a "known good" extracted image (inode exhaustion).
— (Can use on XFS, btrfs, ... but not ext4 family.)
» Unprivileged userspace overlayfs using FUSE (Linux >=4.18).

(Container images themselves have significant flaws as well.)

fsuse @ NTT] iinux

/sys/fs/cgroup is a roadblock to many features we want in rootless
containers (accounting, pause and resume, even getting a list of PIDs!).

- By default completely owned by root (and managed by systemd).

There are a variety of workarounds, with various downsides:

« cgroup namespaces (with nsdelegate) only work in cgroupv2.
« LXC’'s pam cgfs requires installation of a PAM module (and only works
for logged-in users).

fsuse @ NTT] iinux

Current adoption
status

runc

Fully supported since 1.0.0-rc4 (merged March 2017).

« Some minor features don’t work because of outside restrictions.
* Originally only supported completely-unprivileged (no funny
business) mode.

With 1.0.0-rc5, it supports “partially privileged” mode:

« /sys/fs/cgroups can be used if they are set up to be writable.
* Multi-user mappings are supported if they are set up with
/etc/sub[ug]id.

CLONE NEWCGROUP still not supported (but nsdelegate is v2-only).

fsuse @ NTT] iinux

umoci and orca-build

umoci is the original generic OCI image manipulation tool.

* https://github.com/openSUSE/umoci
* Supports extraction (unpack) and layer generation (repack).
|t has supported rootless mode since the beginning.

— Emulates cap_ DAC OVERRIDE with recursive chmod.

— Supports persistent xattr-based cnhown (2) emulation.

orca-build was one of the first dameon-less OCI (Dockerfile) builders.

 Built on top of umoci, skopeo, and runc.
« Supports rootless building, and is only 500 lines of Python.
« Currently have plans to merge into umoci as a contrib/ wrapper.

fsuse @ NTT] iinux

https://github.com/openSUSE/umoci

BuildKit and img

 BuildKit: next-generation backend for "docker build
— Integrated to Docker since v18.06, but can be also used as a
standalone daemon, with support for the rootless mode
— Uses the host network namespace at the moment
* Not a huge problem when BuildKit itself is containerized
— Rootless BuildKit has been used in OpenFaaS cloud

* img: rootless and daemonless image builder based on BuildKit, by
Jessie Frazelle
— Same as BuildKit but daemonless

fsuse @ NTT] iinux

« Google’s unprivileged container image builder
 Different from our approach

— Kaniko itself needs to be executed in a container (without
—--privileged)

— Dockerfile RUN instructions are executed without creating nested
containers inside the Kaniko container

* A RUN instruction gains the root in the Kaniko container
- Seems inappropriate for malicious Dockerfiles due to the lack of isolation
— Potential cloud credential leakage: #106

fsuse @ NTT] iinux

https://github.com/GoogleContainerTools/kaniko/issues/106

Docker (Moby) & Podman

« Docker / Moby
— Rootless mode is being proposed: #37375
— Supports both slirp4netns and VPNK:It for network isolation
— Even Swarm-mode works! (except overlay NW atm)

« Podman: Red Hat's daemonless replacement for docker
— Already supports rootless mode
— Uses slirp4netns (Thanks Giuseppe Scrivano!)

fsuse @ NTT] iinux

https://github.com/moby/moby/issues/37375

Kubernetes & CRI runtimes

* kubelet, kube-proxy, and dockershim require a bunch of hacks for
running without cgroups and sysctl
— No hack needed for kube-apiserver and kube-scheduler
— POC available; Planning to propose KEP to SIG-node soon

* Alternative CRI runtimes:
— CRI-O: Already supports rootless mode
— containerd: rootless mode is on plan

« TODO: stability improvement & multi-node network

fsuse @ NTT] iinux

“Usernetes”

Experimental binary distribution of rootless Moby (Docker), CRI-O and
Kubernetes, installable under SHOME without mess
https://github.com/rootless—containers/usernetes

$ tar xjvi usernetes-x86 64.tbz
$ cd usernetes

S

./kubectl.sh run -it --image..

THE

L LINUX

FOUNDATION

https://github.com/rootless-containers/usernetes

Demo: “Usernetes’

NNNNNNNNNNNNNNNNNN

