THE LINUX FOUNDATION

State of Container Networking Where are we at and where are we going?

Frederick F. Kautz IV / Red Hat

OPEN SOURCE SUMMIT

Container Networking

Containers

Virtualization Methodology

- OS Kernel allows for multiple isolated user space
- Isolation by features such as cgroups and namespaces

Cgroups provides ability to

- limit, account and isolate resource usage of process groups
- prioritize resources and control that includes freeze, checkpoint and restarts

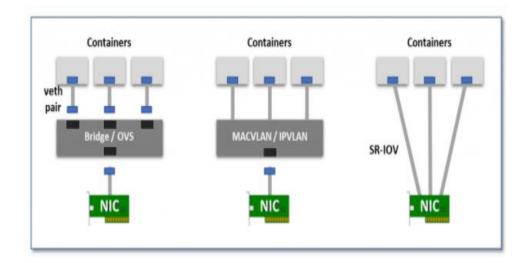
Namespace

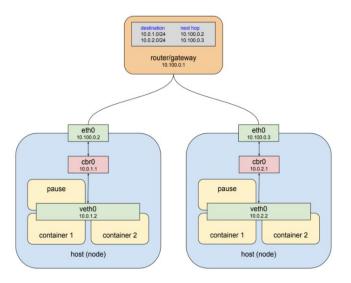
 partitions key kernel structure to create environment that include process, network, IPC, mount points, hostname and user

Container Virtualization Benefits

- Density More containers than VMs in a single host
- Speed Starting up a container can take less than a second
- Low overhead Management Lower weight orchestration
- Portability Encapsulating an application and its configuration simplifies the migration process
- Options Variety of different Open Source standards

Container Management Landscape




Container Networking Types

- None
 Bridge
 Host
 Overlay
- Underlay

Container Networking Model

Container Networking Landscape

Major Types of SDNs

Dataplane OSI Level

- L2 MAC Address, L2 Switches
- L3 IP Address, IP Routers
- L4 TCP/UDP Ports, Load Balancers
- L7 Application aware, Service Mesh

- Control plane
 - Static
 - Centralized
 - Distributed
- Management plane
 - CNI
 - libnetwork

Contiv

- Multi host policy based networking
- Multiple backend drivers:
 - L2 (VLAN)
 - L3 (BGP)
 - Overlay (VXLAN)
 - Cisco SDN (ACI)
- Policy support

Flannel

- Allocates a separate subnet per host
- Overlay network between each host
- K8S API or etcd for configuration management
- No policy, pair with calico

Weave

- Uses standard port numbers for containers
- Container IP discovered from DNS query on container name
- Two connection modes :
 - Sleeve mode
 - UDP channel to traverse IP packets from containers
 - Fastdp mode
 - VXLAN based solution

Calico

- Policy focused
- Pure layer 3 approach
- Also implements BGP for routing, for scaling
- Option to use stateless IPinIP overlay

Contrail

- Policy support
- Gateway services
- SNAT
- ECMP load balancing in services
- Ingress load balancing

OpenDaylight

- Openstack Kuryr Integration
- POD L2 connectivity same node
- POD L3 connectivity multi-node
- Service connectivity WIP

OVN

- Creates logical switches and routers
- Reference architecture for OVS based container networking solutions
- Lightweight control plane with essential features
- Geneve based

Data Planes

VPP

- Packets processed in batch through nodes in a Directed Graph
- Routing decisions in Userspace
- Attempts to eliminate cache misses
- Supports DPDK

OpenVSwitch

- Dataplane for many production quality SDN solutions
- Packets processed rules in tables
- Routing decisions in Kernel
- Configurable through OVSDB and OpenFlow
- Extensive set of built in features
- Supports DPDK

Recent Advances

eBPF

- eBPF support in kernel expanded
 - bpfilter
- Historically used netfilter hook
 join-points
- XDP added eBPF before memory allocation for received packets
- Cilium added eBPF data interception before linux allocation occurs

Shared Memory

- VPP based shared memory driver
- Userspace solution
- App can be modified to use libmemif directly
- LD_PRELOAD to redirect socket

Service Mesh

- Layer 7 Load Balancer & Service
 Discovery
- Focus primarily on MicroServices
- Load Balancing
- Failure recovery
- Graceful function degradation
- Distinct from SDN

K8s on Edge

- Starting to see real world deployments
 - Chic-Fil-A running 2000 K8s clusters, one for each store
- K8s-based edge data centers
 - Vapor.io
- SDNs expanding beyond network
 virtualizer to support edge

5G CNFs on K8s

- New term, Cloud Native Network Functions (CNFs)
- VNF to CNF not straightforward
- May have virtualized components
 - Why? Kernel modules!
- Moved from talking about CNFs to building infrastructure
- Despite new efforts, CNFs still have many open questions

Network Service Mesh

- Cloud-Native Controller
- Matchmaking for cross-connects
 - Pod -> Pod
 - Dataplane -> Dataplane
 - Pod -> Device
- Allows non-IP payloads
- Choose your favorite dataplane
- Implements SFC
- Doesn't require changes K8s

Multus CNI

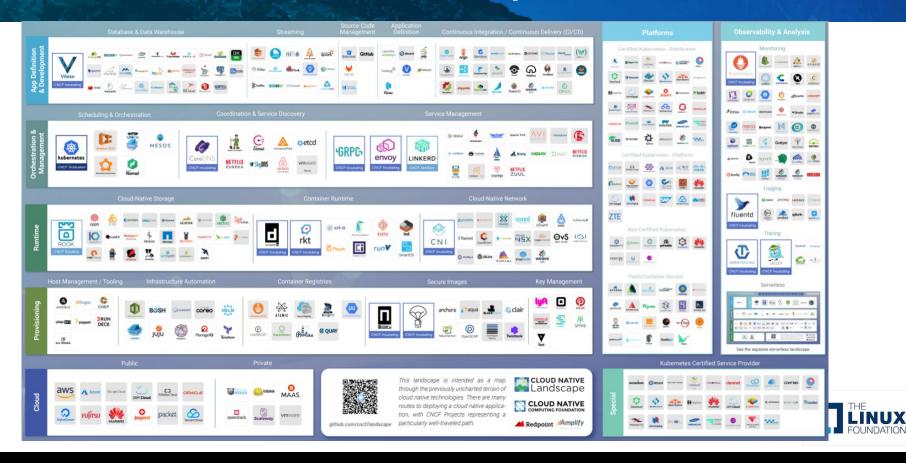
- Coordinates multiple CNI plugins why may be backed by multiple SDNs
- Executes multiple CNI plugins for a single pod
- End result may be multiple interfaces

IPv6

- K8S supports IPv6-only clusters – No mixed IPv6 + IPv4 cluster
- Segment Routing (IETF)
- Work here continues to progress

Working Groups

- Several working groups:
- CNCF CNI
- Network SIG
- Network Plumbing Working Group, sub group of K8s sig-network
- Network Service Mesh
- Istio Working Group
- CNCF driving CNF definition
- ONAP
- OpenDaylight COE Project



Current work

- Increase diversity in container networking
 - SR-IOV
 - Memif
 - eBPF bypass
- IPV6-only Deployments
- Multi-Endpoint (includes Multi-Interface)
- More eBPF support
- Telco involvement
- VPP

Cloud Native Landscape

Future Trends

- Kubernetes in Telco
- Kubernetes in more advanced enterprise (beyond network virt)
- Edge Containers (Better interop between SDN + Schedulers)
- Smarter Multi-Site Interop (Cloud <~> Cloud / Cloud <~> OnPrem)
- Service Mesh + SDN Interop
- Network Service Mesh + SDN Interop
- Openstack Services Managed by Kubernetes
- More kernel bypass with eBPF
- SDN use P4 advanced use cases (PISA chips become common)

References

- google-cloud/understanding-kubernetes-networking
- <u>Container-landscape</u>
- Hackers-guide-kubernetes-networking
- <u>ligato/container-networking-overview</u>

