
Greg Kroah-Hartman

Disclaimer
• This talk vastly over-simplifies things.
• See notes for full details and resources.

https://github.com/gregkh/presentation-spectre

https://github.com/gregkh/presentation-spectre
https://github.com/gregkh/presentation-spectre

Spectre
• Hardware bugs
• Valid code can be “tricked” into exposing

sensitive data to attacking programs.
• Exploits the speculative execution model of

modern CPUs.
• Many different variants.
• Is going to be with us for a very long time!

Different Variants
• 1 – Bounds Check Bypass (BCB)
• 2 – Branch Target Isolation (BTI)
• 3 – Rogue Data Cash Load (RDCL)
• 3a – Rogue System Register Read (RSRE)
• 4 – Speculative Store Bypass (SSB)
• 5 – Lazy Floating Point State Restore (LazyFP)
• L1TF – L1 Terminal Fault “Foreshadow”

variant 1 – Bounds check bypass
• Uses the kernel to read memory of another

process or virtual machine.
• Fixed by core kernel changes.
• Lots of individual drivers still need to be fixed.

variant 1 – vulnerable code
int load_array(int *array, unsigned int user_value)
{

if (user_value >= MAX_SIZE)
return 0;

return array[user_value];
}

variant 1 – vulnerable code
int load_dependent_array(int *array1, int *array2,

int index)
{

int value1, value2;

value1 = load_array(array1, index);
value2 = load_array(array2, value1);

return value2;
}

variant 1 – fixed code
int load_array(int *array, unsigned int user_value)
{

if (user_value >= MAX_SIZE)
return 0;

user_value = array_index_nospec(user_value, MAX_SIZE);

return array[user_value];
}

variant 1 – fixed code
#define array_index_nospec(index, size) \
({ \

typeof(index) _i = (index); \
typeof(size) _s = (size); \
unsigned long _mask = array_index_mask_nospec(_i, _s);\

\
BUILD_BUG_ON(sizeof(_i) > sizeof(long)); \
BUILD_BUG_ON(sizeof(_s) > sizeof(long)); \

\
(typeof(_i)) (_i & _mask); \

})

variant 1 – fixed code - x86
static inline unsigned long

array_index_mask_nospec(unsigned long index,
 unsigned long size)

{
unsigned long mask;

asm ("cmp %1,%2; sbb %0,%0;"
:"=r" (mask)
:"g"(size),"r" (index)
:"cc");

return mask;
}

variant 1 – fixed code
int load_array(int *array, unsigned int user_value)
{

if (user_value >= MAX_SIZE)
return 0;

user_value = array_index_nospec(user_value, MAX_SIZE);

return array[user_value];
}

variant 1 – Fix dates*
• x86

– 4.14.14 17 January 2018
– 4.9.77 17 January 2018
– 4.4.113 23 January 2018

• ARM
– 4.15.4 17 February 2018
– 4.14.21 22 February 2018

*Fixes keep coming
• These are the “first fixed” dates.
• Later kernels get more fixes and improvements.
• Keep updating your kernel & microcode!

variant 1 – Fix dates again
• x86

– 4.16.11 22 May 2018
– 4.14.43 22 May 2018
– 4.9.102 22 May 2018

• ARM
– 4.16 1 April 2018
– 4.9.95 20 April 2018

variant 2 – Branch target injection
• Abuses the CPU branch predictor.
• Read data from kernel or other virtual machine.
• Fixed by compiler, kernel, & microcode updates.
• “retpoline”

https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html
https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html

variant 2 – Fix dates*
• x86

– 4.15.9 11 March 2018
– 4.14.26 11 March 2018
– 4.9.87 11 March 2018
– 4.4.121 11 March 2018

*More fixes and optimizations happened in later kernels

 Meltdown
• Spectre variant “3”
• Read kernel data from userspace.
• Fixed with page table isolation kernel changes

(Kaiser for older kernels).
• Fix slows down enter/exit of the kernel.
• Implemented differently for different kernel

releases and distros.

 Meltdown – fix dates
• x86

– 4.14.11 02 January 2018
– 4.9.75 05 January 2018
– 4.4.110 05 January 2018

• ARM
– 4.15.4 17 February 2018
– 4.14.20 17 February 2018
– 4.9.93 08 April 2018

variant 3a – Rouge system register read

• Abuses the reading of system registers.
• Read data from kernel or other virtual machine.
• Kernel fix for Meltdown solves this problem.

variant 4 – Speculative Store Bypass

• Can execute and read beyond what is expected.
• Read data from kernel or other virtual machine.
• Minor kernel changes.
• Microcode update required for full protection.

variant 4 – Speculative Store Bypass

• x86
– 4.16.11 22 May 2018
– 4.14.43 22 May 2018
– 4.9.102 22 May 2018

variant 5 – Lazy FP state restore
• Uses the old “lazy floating point restore” method

to read memory of another process or virtual
machine.
• Details to be published June 27.
• Linux kernel fixed in 2016.

variant 5 – Fix dates
• x86

– 4.6 15 May 2016
– 4.4.138 16 June 2018

 ”Foreshadow” - L1 Terminal Fault
• Read any data in the L1 cache
• Breaks SGX “secure” enclaves
• “simple” fix for local attacks
• “complex” fix for virtual machines
• Intel-only
• Microcode update to help resolve the issue.

• x86
– 4.18.1 15 April 2018
– 4.14.63 15 April 2018
– 4.9.120 15 April 2018
– 4.4.148 15 April 2018

 ”Foreshadow” - Fix dates

• x86
– 4.18.2 17 April 2018
– 4.18.3 18 April 2018
– 4.18.4 22 April 2018
– 4.18.5 24 April 2018
–

 ”Foreshadow” - Fix dates again

Why this is such a big deal
• CPU bugs require software & microcode fixes.
• All operating systems are affected.
• Performance will decrease.
• Totally new class of vulnerabilities.
• We will be finding, and fixing, these for a very

long time.

Linux’s response
• Companies were notified, but not developers.
• Developers notified very late, resulting in delay

of fixes.
• Majority of the world runs non-corporate kernels.
• Intel is now working with some developers.

Keeping a secure system
• Take ALL stable kernel updates.

– Do NOT cherry-pick patches.
• Enable hardening features.
• Update to a newer major kernel version where

ever possible.
• Update your microcode/BIOS!

8/30/18

Greg Kroah-Hartman

Spectre, Meltdown, Forshadow, and Linux

This talk is all about the newly announced category of bugs
called Spectre.

Disclaimer
• This talk vastly over-simplifies things.
• See notes for full details and resources.

https://github.com/gregkh/presentation-spectre

In order to keep this talk within the time limit, I am vastly
over simplifying things.

Please see the presentation notes at the link here for more
details and a full list of resources on how to find out more
information about this topic.

Spectre
• Hardware bugs
• Valid code can be “tricked” into exposing

sensitive data to attacking programs.
• Exploits the speculative execution model of

modern CPUs.
• Many different variants.
• Is going to be with us for a very long time!

Spectre is the category of new CPU bugs that were originally
discovered last year in July first by Jann Horn of Google and
then independently discovered by others in the few months
afterward.

These bugs are problems in the hardware itself that takes
advantage of how CPUs speculatively execute code. I will
describe what this means later on.

All of these bugs are ones that enable attackers to read memory
of other programs or virtual machines. No memory can be
modified.

There are many different variants of these bugs that have been
found so far.

Due to the way that CPUs work, these problems are going to be
with us for a very long time as we clean up after the mess.

Different Variants
• 1 – Bounds Check Bypass (BCB)
• 2 – Branch Target Isolation (BTI)
• 3 – Rogue Data Cash Load (RDCL)
• 3a – Rogue System Register Read (RSRE)
• 4 – Speculative Store Bypass (SSB)
• 5 – Lazy Floating Point State Restore (LazyFP)
• L1TF – L1 Terminal Fault “Foreshadow”

Here are the different variants that have been announced so far.

All of the variants end up doing the same thing, allowing memory
to be read that should not be read, but they do it in different
ways, which results in the different names.

They require different methods of protection, because they abuse
different parts of the CPU in order to achieve the attack.

1, 2, and 3 were in the initial announcement, January 4, 2018

3a and 4 were made public May 21, 2018

5 “leaked” June 13, full details to be published June 27

L2TF – made public August 14, 2018

variant 1 – Bounds check bypass
• Uses the kernel to read memory of another

process or virtual machine.
• Fixed by core kernel changes.
• Lots of individual drivers still need to be fixed.

Like I said earlier, all of the variants allow memory to be read
from places that should not be readable. Examples of this is
reading memory of the kernel itself, or different programs
running in the same machine, or even reading memory of a
different virtual machine.

Because of this, these bugs can be exploited by browers running
scripts that can read data from other programs or tabs, or in a
virtual machine to read data from different customer’s virtual
machines on the same server.

The first variant uses correct code in the kernel to read the
memory of another program.

It was fixed by changing some core parts of the kernel, but also
requires all drivers to be audited and changed as well. That
work has only just started.

variant 1 – vulnerable code
int load_array(int *array, unsigned int user_value)
{

if (user_value >= MAX_SIZE)
return 0;

return array[user_value];
}

This is an example of kernel code that is completely correct as written.

Spectre uses this correct code to take advantage of the CPU’s behavior
in trying to guess what the code is going to do in the future.

If you call this code a lot, the CPU learns that the check will succeed so it
gets smart and preloads the value that array+user_value to be
returned.

If you suddenly pass in a very large number for user_value, the CPU will
preload the array+user_value memory location while it is still doing
the check on the first line. When that check fails, the CPU will “stall”
and unwind itself and return the error value and process continues on
correctly.

But, that invalid memory location was read by the CPU and placed in the
cache already. This can then be detected by a program running
elsewhere in order to determine exactly what that memory value was.

Doing this is not fast, you can end up reading 2000 bytes a second, but
that’s all you need, you now have access to memory values you should
not have access to.

variant 1 – vulnerable code
int load_dependent_array(int *array1, int *array2,

int index)
{

int value1, value2;

value1 = load_array(array1, index);
value2 = load_array(array2, value1);

return value2;
}

Just having a single preload is not a problem, but when you chain them
together, loading the value of another array based on the value in a
previous array, the CPU can possibly load a cache line from any
location in memory.

When that happens, you can then detect that cache read from a separate
program to determine what those memory values are. Doing this is
not fast, you can read memory at only about 2000 bytes a second, but
that is all that is needed as you now have access to memory that you
should not have had access to.

variant 1 – fixed code
int load_array(int *array, unsigned int user_value)
{

if (user_value >= MAX_SIZE)
return 0;

user_value = array_index_nospec(user_value, MAX_SIZE);

return array[user_value];
}

To stop the CPU from speculating and reading outside of the memory
range, we have to put in a “no speculation” mask in the code to force
the CPU to not do this.

On Linux this call is array_index_nospec()

variant 1 – fixed code
#define array_index_nospec(index, size) \
({ \

typeof(index) _i = (index); \
typeof(size) _s = (size); \
unsigned long _mask = array_index_mask_nospec(_i, _s);\

\
BUILD_BUG_ON(sizeof(_i) > sizeof(long)); \
BUILD_BUG_ON(sizeof(_s) > sizeof(long)); \

\
(typeof(_i)) (_i & _mask); \

})

For fun, here is what this array_index_nospec() macro does.

It verifies at build time that you are actually comparing things that
should be properly compared.

And it generates a “mask” to force the values of the index to fit in the
correct range that is required.

The call that does this mask calculation, is array_index_mask_nospec()
and is custom to each CPU type.

variant 1 – fixed code - x86
static inline unsigned long

array_index_mask_nospec(unsigned long index,
 unsigned long size)

{
unsigned long mask;

asm ("cmp %1,%2; sbb %0,%0;"
:"=r" (mask)
:"g"(size),"r" (index)
:"cc");

return mask;
}

Here is the implementation of array_index_mask_nospec() for the x86
processor

It is just a few assembly language instructions that does the compare of
the values and stops the processor from doing any speculation beyond
this point.

Different processor types have different implementations of this function.

variant 1 – fixed code
int load_array(int *array, unsigned int user_value)
{

if (user_value >= MAX_SIZE)
return 0;

user_value = array_index_nospec(user_value, MAX_SIZE);

return array[user_value];
}

Now back to our fixed example.

Because we properly tell the processor to not speculate outside the
range provided, the CPU will not try to preload any values outside of
the range here.

variant 1 – Fix dates*
• x86

– 4.14.14 17 January 2018
– 4.9.77 17 January 2018
– 4.4.113 23 January 2018

• ARM
– 4.15.4 17 February 2018
– 4.14.21 22 February 2018

Here are a listing of the different kernel versions and release dates that
the variant 1 problem was fixed in.

Note that for ARM processors, no older kernels were originally fixed.

And I say “first fixed” because...

*Fixes keep coming
• These are the “first fixed” dates.
• Later kernels get more fixes and improvements.
• Keep updating your kernel & microcode!

Fixes for these problems keep coming. We might have a “first fixed by”
date, but there are almost always future fixes to make things run
faster, or cover more problem areas, or just fix up more drivers where
this code signature is found.

The moral of the story is to always keep updating your kernel and your
processor microcode whenever new updates come out.

variant 1 – Fix dates again
• x86

– 4.16.11 22 May 2018
– 4.14.43 22 May 2018
– 4.9.102 22 May 2018

• ARM
– 4.16 1 April 2018
– 4.9.95 20 April 2018

As proof, a few months later, we got more fixes for variant 1 merged,
with better coverage and better performance.

Also, for ARM chips, the fix got backported to the 4.9 stable kernel tree.

But not for 4.14, which is odd, I don’t know why that did not happen.

variant 2 – Branch target injection
• Abuses the CPU branch predictor.
• Read data from kernel or other virtual machine.
• Fixed by compiler, kernel, & microcode updates.
• “retpoline”

Variant 2 is much like variant 1, but instead of abusing the data lookup
portion of the CPU, it abuses the ability for a CPU to predict which way
it will go when a function pointer is called.

This problem can enable an attacker to read memory from the kernel, or
another virtual machine.

To fix this issue it required that changes be made in the compiler, the
kernel, and in the processor itself with microcode updates.

A new type of function protection was created by Matt Linton of Google
called “retpoline”. This is a way for the compiler to protect function
calls in a “fast” way from being abused. It is much quicker than the
microcode updates that turn off branch prediction, but it is done in the
compiler, so all code must be rebuilt with these changes.

For the kernel, that is not a problem to take advantage of, but for legacy
code, be aware of this and turn on the microcode changes instead if
you can not rebuild your problem applications.

variant 2 – Fix dates*
• x86

– 4.15.9 11 March 2018
– 4.14.26 11 March 2018
– 4.9.87 11 March 2018
– 4.4.121 11 March 2018

*More fixes and optimizations happened in later kernels

Again, here are the dates and releases that this problem was first found
and fixed in. There were later releases that improved on the fixes
here, so updates are still necessary.

ARM processors did not seem to be vulnerable to this class of problems.

 Meltdown
• Spectre variant “3”
• Read kernel data from userspace.
• Fixed with page table isolation kernel changes

(Kaiser for older kernels).
• Fix slows down enter/exit of the kernel.
• Implemented differently for different kernel

releases and distros.

This is variant “3” of spectre

It allows a userspace program to be able to read data from within the
kernel

It is fixed with a large number of kernel patches that implement “page
table isolation”. This moves all kernel memory outside of the system
when entering/exiting userspace, preventing userspace from being able
to see kernel memory entirely.

The “Kaiser” paper first suggested this solution for a different type of
kernel vulnerability, and this is what it is sometimes called

It slows down every time you enter or exit the kernel from userspace,
which means that processes that do a lot of I/O accesses are hit hard.

Different distributions backported the needed fixes here in very different
ways. Running benchmarks on the distributions results in vastly
different numbers. Please test yourself if you are stuck using a
distribution-based kernel to see if you should just update to a newer
release that works much faster.

 Meltdown – fix dates
• x86

– 4.14.11 02 January 2018
– 4.9.75 05 January 2018
– 4.4.110 05 January 2018

• ARM
– 4.15.4 17 February 2018
– 4.14.20 17 February 2018
– 4.9.93 08 April 2018

Here are the dates that this was first fixed.

Note, the backports to 4.9 and 4.4 are VERY different from what is in
4.14 and newer. There are still some know holes in the backported
changes, as they are implemented in a different manner. So be careful
if you need to use these old kernel versions, and test to ensure that
your systems are safe.

Also note that newer kernels run faster than older ones do for this
problem. So if at all possible, update to 4.14 or newer please.

variant 3a – Rouge system register read

• Abuses the reading of system registers.
• Read data from kernel or other virtual machine.
• Kernel fix for Meltdown solves this problem.

Variant 3a just got announced a few weeks ago. It was found by the ARM
developers when the first variants were announced.

It ends up getting fixed by all of the 3a fixes as well (Meltdown), and is
yet another reason why you should upgrade your kernel

variant 4 – Speculative Store Bypass

• Can execute and read beyond what is expected.
• Read data from kernel or other virtual machine.
• Minor kernel changes.
• Microcode update required for full protection.

This variant was found again by Jann Horn and was announced in last
month.

It finds that the CPU can execute and read code beyond what is
expected. No known attacks at this time, only a basic proof of concept
that required kernel changes to trigger it.

Microcode update is needed to fully resolve this, along with kernel
updates to take advantage of it.

variant 4 – Speculative Store Bypass

• x86
– 4.16.11 22 May 2018
– 4.14.43 22 May 2018
– 4.9.102 22 May 2018

Here are the release kernels and dates for the variant 4 version

variant 5 – Lazy FP state restore
• Uses the old “lazy floating point restore” method

to read memory of another process or virtual
machine.
• Details to be published June 27.
• Linux kernel fixed in 2016.

Variant 5 was just leaked last week, due to some good research
happening by the OpenBSD and FreeBSD developers, who were not
notified that someone else had also found and reported this problem.

This attacks an old feature of Linux and some operating systems that
used the “lazy floating point restore” method in their kernel.

Linux stopped using this method in 2016 as it turned out to be faster if
you did not do this. So any kernels newer than 2016 are just fine.

Full details are to be published next week.

variant 5 – Fix dates
• x86

– 4.6 15 May 2016
– 4.4.138 16 June 2018

This was fixed back in the 4.6 kernel in May of 2016.

I did backport the needed fixes last week to people still stuck on the 4.4
kernel tree.

But note that many of the other Spectre fixes are not backported to 4.4,
so please upgrade, you should not be using 4.4 kernels except if you
really know what you are doing.

 ”Foreshadow” - L1 Terminal Fault
• Read any data in the L1 cache
• Breaks SGX “secure” enclaves
• “simple” fix for local attacks
• “complex” fix for virtual machines
• Intel-only
• Microcode update to help resolve the issue.

Yet-another form of side-channel attacks.

You can read any data that shows up in the L1 cache, making this a way
to break into the “secure” enclave that SGX was trying to provide.

It also allows you to read any memory in any virtual machine running on
the system, from any other virtual machine.

The fix for a local attack is simple, and was backported to all of the
stable kernels. No performance issues

The fix for when you are a host of virtual machines is more complex, and
is costly.

So far seen to only be for Intel processors

Microcode update!

• x86
– 4.18.1 15 April 2018
– 4.14.63 15 April 2018
– 4.9.120 15 April 2018
– 4.4.148 15 April 2018

 ”Foreshadow” - Fix dates

Stable kernels were released with the fixes 1 day after the embargo
lifted.

Note that for 4.4.y, this was the local fix only, not for if 4.4.y is running as
the host for virtual machines. That is a much more complex set of
changes that will not be backported to that kernel tree.

Again, use 4.4.y only if you know what you are doing.

• x86
– 4.18.2 17 April 2018
– 4.18.3 18 April 2018
– 4.18.4 22 April 2018
– 4.18.5 24 April 2018
–

 ”Foreshadow” - Fix dates again

Due to the limited amount of testing that was possible during the
embargo, lots of issues were found “in the real world”, and so we had
to do lots of quick updates in order to address them.

5 stable updates in 9 days happened.

For some backports (like 4.4) there are still reported problems that are
being worked on to address the problem

Why this is such a big deal
• CPU bugs require software & microcode fixes.
• All operating systems are affected.
• Performance will decrease.
• Totally new class of vulnerabilities.
• We will be finding, and fixing, these for a very

long time.

This class of bug shows up in all modern CPU architectures. It requires
microcode fixes combined with compiler and operating system fixes,
and it affects all operating systems.

These fixes will cause performance to decrease under most workloads
because the advanced speculation of data has to stop, which slows the
CPU down.

This is a whole new class of vulnerabilities, which does not happen very
often at all.

And as can be seen by the announcements of new variants being found
over the past few weeks and months, these types of bugs will continue
to need to be fixed for a long time in the future.

Linux’s response
• Companies were notified, but not developers.
• Developers notified very late, resulting in delay

of fixes.
• Majority of the world runs non-corporate kernels.
• Intel is now working with some developers.

When these bugs were originally announced the first week of January,
the community was caught off-guard. We did not have a fix for most of
the issues, and even the fixes that we had were not sufficient in some
cases.

This was caused because the original vendors notified other companies,
not the kernel developers responsible for these areas of the kernel.

Businesses are used to working with other businesses, but it turns out, in
the big cloud systems, it is community-based kernels that are in the
large majority of them. One major cloud vendor reports that less than
10% of their Linux instances run an “enterprise supported”
distribution. The other 90% runs either kernel.org kernels, or
community-supported distributions like Debian and Fedora.

Intel has learned from this and is now working with a small subset of
developers to try to address these types of issues. So far it is getting
better, but as the LazyFP announcement leak shows, it is still not ideal.

Keeping a secure system
• Take ALL stable kernel updates.

– Do NOT cherry-pick patches.
• Enable hardening features.
• Update to a newer major kernel version where

ever possible.
• Update your microcode/BIOS!

These are the things that you have to do in order to keep your systems
secure.

You have to take ALL of the stable kernel patches. You can not just
“cherry pick” individual patches that you think you might need. You
will miss fixes that you do not realize you need, as they turn out to be
important later.

Always update to a new stable kernel, including major versions. Do not
stay at older stable versions for no good reason. Newer versions fix
problems that you do not know you have yet. Proof of this is the
LazyFP bugfix that was fixed in 2016.

Update your microcode and BIOS with the latest updates from your
vendor. They make these updates for a reason, and it is to fix the
buggy CPU models that Spectre research is showing.

	Slide1
	Slide 2
	Click to edit title
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide1
	Slide 2
	Click to edit title
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

