
Uptane
Securing Over-the-Air Updates
Against Nation State Actors

Justin Cappos
New York University

What do these companies have in
common?

What do these companies have in
common?

Users attacked via software
updater!

Software repository compromise
impact

• SourceForge mirror distributed malware.
• Attackers impersonate Microsoft

Windows Update to spread Flame
malware.

• Attacks on software updaters have
massive impact
• E.g. South Korea faced 765 million dollars in

damages.
• NotPetya spread via software updates!

https://sourceforge.net/blog/phpmyadmin-back-door/
https://www.trailofbits.com/resources/flame-md5.pdf

The modern automobile
Exhaust

Engine Control Unit

TCU

Transmission

Brake LineABS

Airbag Control Unit

Body Controller
Locks/Lights/Etc

Radio

 Telematics _

Internet/
PSTN

HVAC

Keyless
Entry

Anti-Theft

5

◼ Researchers have made some scary attacks against vehicles

▪ remotely controlling a car's brakes and steering while it's driving

▪ spontaneously applying the parking brake at speed

▪ turning off the transmission

▪ locking driver in the car

Cars are multi-ton, fast-moving weapons

People will die

Cars Are Dangerous

Updates Are Inevitable

◼ Millions of lines of code means bugs
◼ Regulations change -> firmware must change
◼ Maps change
◼ Add new features
◼ Close security holes
◼ Cars move across borders…

Updates Must Be Practical

◼ Updating software/firmware has often meant recalls.

◼ Recalls are extremely expensive

▪ GM spent $4.1 billion on recalls in 2014

▪ GM's net income for 2014 was < $4 billion

▪ People do not like recalls.

◼ Updates must be over the air.

◼ Update -> Control

Updates Are Dangerous

◼ Nation-state actors pull off complex attacks

▪ Must not have a single point of failure

Secure Updates

What to do?

Must update to fix security issues

Insecure update mechanism is a new security problem

“...No one Can Hack My Mind”:
Comparing Expert and
Non-Expert Security Practices
Ion, et al. SOUPS 2015

What are some of the attacks?

Attacks

Arbitrary software attack
Repository

Is there an update?

Here is an update...

ECU-1
v.10 ECU-1

v.12

13

ECU-1
v.Evil

Freeze attack

Is there an update?

Same old, same old!

ECU-1
v10 ECU-1

v12

Repository

14

ECU-1
v10

Rollback attack

Is there an update?

Here is an update

ECU-1
v10

ECU-1
v1

ECU-1
v12

Repository

15

Slow retrieval attack

Is there an update?

Y … e … a … h … …

ECU-1
v10 ECU-1

v12

Repository

16

Mix and Match attacks

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

17

ECU-2
v12

ECU-1
v11

Partial Bundle attack

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

18

ECU-2
v12

ECU-1
v12

No, ty

Partial Freeze attack

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

19

ECU-2
v12

ECU-1
v12

So how do people try to prevent these
attacks?

Update Basics

Repository

Clientxyz.tgz, pls

xyz.tgz

Inadequate Update Security 1: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Traditional solution 1:

Authenticate the repository (TLS, SSL, etc)

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ

Inadequate Update Security 2: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Transport Layer Security: Problem 1

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ
Client has to trust all of these
Certificate Authorities

Inadequate Update Security 3: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Transport Layer Security: Problem 2

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ
Client has to trust this key.

… which HAS to exist ON the repository, to
sign communications continuously.

Client has to trust this key

Inadequate Update Security 4: Just Sign!

Repository

Clientxyz.tgz, pls

xyz.tgz

Traditional Solution 2:
Sign your update package with a specific key.
Updater ships with corresponding public key.

XYZ

… used for every update to the repository.

… key ends up on repo or build farm.

If an attacker gains the use of this key, they
can install arbitrary code on any client.

Update Security

Repository

Clientxyz.tgz, pls

xyz.tgz

We need:
● To survive server compromise with the

minimum possible damage.
○ Avoid arbitrary package attacks

● Minimize damage of a single key being
exposed

● Be able to revoke keys, maintaining trust
● Guarantee freshness to avoid freeze attacks
● Prevent mix and match attacks
● Prevent rollback attacks
● Prevent slow retrieval attacks
● ...

Must not have single point of failure!

TUF goal “Compromise Resilience”

● TUF secures software update files
● TUF emerges from a serious threat model:

○ We do NOT assume that your servers are perfectly secure
○ Servers will be compromised
○ Keys will be stolen or used by attackers
○ TUF tries to minimize the impact of every compromise

The Update Framework (TUF)

Linux Foundation CNCF project

CII Best Practices Silver Badge

Responsibility Separation

timeliness

Root of trust

content consistency

28

The Update Framework (TUF)

TUF Roles Overview

Timestamps

(timeliness)

Root

(root of trust)

Snapshot

(consistency)

Targets

(integrity)
29

The Update Framework (TUF)

Repository

Clientxyz.tgz, pls

xyz.tgz

The Update Framework (TUF)

Role metadata (root, targets, timestamp, snapshot)

The modern automobile
Exhaust

Engine Control Unit

TCU

Transmission

Brake LineABS

Airbag Control Unit

Body Controller
Locks/Lights/Etc

Radio

 Telematics _

Internet/
PSTN

HVAC

Keyless
Entry

Anti-Theft

31

Automobiles present particular difficulties.

● Timeserver

● Multiple Repositories: Director and Image Repository

● Manifests

● Primary and Secondary clients

● Full and Partial verification

Uptane builds on The Update Framework (TUF)

Uptane: Client-side Basics

Primary
Client

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary

Secondary

Cell
Network

Uptane: High level view

Image
Repository
(Section 5)

Director
Repository
(Section 6)

Director

Full Verification
(FV) Secondary

Partial
Verification

(PV)
Secondary

Primary
ECU

Time Server
(Section 7)

Inventory
Database

Vehicle
(Section 8)

FV
Secondary

PV
Secondary

signed tokens
& time

metadata
& images

…
vehicle

manifests

…

Time server

35

Time server

● A primary sends a list of tokens,
one for each ECU, to the time
server.

● An automated process on the
time server returns a signed
message containing: (1) the list
of tokens, and (2) the current
time.

Automated
process

time
server

vehicle

Primary

(1)
sends
list of

tokens

(2)
receives
signed current time
& list of tokens

36

Image repository

37

The image repository

targets

A

snapshottimestamp

A*
.im

g

root

OEM-managed supplier-managed

Metadata

B

C
D

E

B*.img

C*.img

CA*.img

CB*.img

signs metadata for

signs root keys for

delegates images to
signs for images

● When possible, OEM
delegates updates for
ECUs to suppliers.

● Delegations are flexible,
and accommodate a
variety of arrangements.

A1.img

B3.img

CA5.img

CB2.img

38

Director repository

39

Director repository

● Records vehicle version
manifests.

● Determines which ECUs
install which images.

● Produces different
metadata for different
vehicles.

● May encrypt images per
ECU.

● Has access to an inventory
database.

Automated
process

Inventory
database

timestamp
metadata(3)

w
r
i
t
e
s(2) reads & writes

encrypted
image

snapshot
metadata

targets
metadata

repository

vehicle

Primary

(1)
sends

vehicle
version

manifest

(4)
receives
link to
timestamp
metadata

(5) downloads

40

Big picture

41

Image
Repository
(Section 5)

Director
Repository
(Section 6)

Director

Full Verification
(FV) Secondary

Partial
Verification

(PV)
Secondary

Primary
ECU

Time Server
(Section 7)

Inventory
Database

Vehicle
(Section 8)

FV
Secondary

PV
Secondary

signed tokens
& time

metadata
& images

…
vehicle

manifests

…

Uptane workflow
on vehicle

42

Downloading updates (1)

● Primary receives an ECU Version
Manifest and a nonce from each
Secondary.

● Primary produces Vehicle Version
Manifest, a signed record of what is
installed on Secondaries

● Primary sends VVM to Director
● Primary sends nonces to Timeserver

43

Downloading updates (2)

● Timeserver returns the
signed [time and nonces] to
the Primary.

44

Downloading updates (3)

● The primary downloads
metadata from both the
Director and Image
repositories on behalf of all
ECUs

● The primary performs full
verification of metadata on
behalf of all secondaries.

45

Full verification

1. Load the latest downloaded time from the time server.
2. Verify metadata from the director repository.

a. Check the root metadata file.
b. Check the timestamp metadata file.
c. Check the snapshot metadata file.
d. Check the targets metadata file.

3. Download and verify metadata from the image repository.
a. Check the root metadata file.
b. Check the timestamp metadata file.
c. Check the snapshot metadata file, especially for rollback attacks.
d. Check the targets metadata file.
e. For every image A in the director targets metadata file, perform a preorder depth-first search for the

same image B in the targets metadata from the image repository, and check that A = B.

4. Return an error code indicating a security attack, if any. 46

Partial verification

1. Load the latest downloaded time from the time server.
2. Load the latest top-level targets metadata file from the director repository.

a. Check for an arbitrary software attack. This metadata file must have been signed by a threshold of
keys specified in the previous root metadata file.

b. Check for a rollback attack.
c. Check for a freeze attack. The latest downloaded time should be < the expiration timestamp in this

metadata file.
d. Check that there are no delegations.
e. Check that every ECU identifier has been represented at most once.

3. Return an error code indicating a security attack, if any.

47

Uptane status / wrap up

48

Uptane “Reference” Implementation

● Goal: Assist other implementers
○ Code readability is a primary goal

● Not the most popular implementation in practice (by design)
○ Readability > performance / implementation size

■ Most TUF deployments do not use the reference implementation
○ Useful as a reference, conformance testing, etc.

● Open source, free to use (MIT License)
○ Other groups are free to contribute!

49

Security Reviews

Reviews of implementations and design:

○ Cure53 audited ATS's Uptane implementation
○ NCC Group audited Uptane's reference implementation

(pre-TUF fork)
○ SWRI finalizing Uptane reference implementation /

specification audit
○ ...

50

Work closely with vendors, OEMs, etc.
● Security reps from 78% of cars
● Many top suppliers / vendors

○ ~12-35% of cars on US roads
● Automotive Grade Linux
● OEM integrations

○ Easy to integrate!

Uptane Integration

Press

○ Dozens of articles
○ TV / Radio / Newspapers / Magazines

52

Get Involved With Uptane!

● Workshops
● Technology demonstration
● Compliance tests
● Standardization (IEEE / ISTO)
● Join our community! (email: jcappos@nyu.edu or go to the Uptane forum)

https://uptane.github.io/

53

mailto:jcappos@nyu.edu

54

For more details, please see the
Implementation Specification and other

documentation at uptane.github.io

Cars are heavily computerized

◼ Today’s car is a big distributed system
▪ Complex computerized control

▪ Millions of lines of code
▪ ~100 distinct computers (ECUs: Electrical Control Units)
▪ Average car last year had about 80
▪ Some luxury or hybrid cars last year had around 150

▪ Shared internal networks (CAN, FlexRay, Ethernet, …)

▪ Increasing external comm. features
▪ Telematics, Bluetooth, TPMS, RDS, XM radio, GPS, keyless start/entry, USB ports, WiFi, etc

◼ Tomorrow’s car -> much more of everything
▪ traffic control, autonomous driving, … jetpacks?

In summary, cars are quickly
becoming networks of embedded
systems with multiple tons of
attached mechanical parts that
move around a bunch. I'm not a
car person, so from my
perspective, that is what a car is:
four wheels and a whole lot of
cheap computers with
closed-source firmware,
networked in a way that would
make you cry.

Software updates

Uptane: Software Update Security for Cars

Inevitable

Dangerous

I hope you'll forgive me for having several
slides to make what will in retrospect
probably four very obvious points. But
here we go.

((CLICK)) Software updates are
necessary.

((CLICK)) Software updates are
dangerous.

Cars Are Dangerous

◼ Cars are also multi-ton fast-moving weapons.

◼ Attacks by a nation-state actor could wreak havoc

Downloading updates (4)

● Encrypted images, if any, are
downloaded from the director
repository.

● Unencrypted images are
downloaded from the image
repository.

58

Downloading updates (5-7)

Primary distributes to Secondaries:

● Timeserver's time attestations
● Director and Image Repo metadata
● Update data for each Secondary

59

Downloading updates (5)

● The primary sends the
timeserver's signed
time to all of its
secondaries.

60

Downloading updates (6)

● The primary sends the
latest downloaded
metadata to all of its
secondaries.

61

Downloading updates (7)

● Additional Storage
(A/B firmware Storage)

62

Before Secondary installs an update (1)

1. Verify the latest downloaded time.
a. Timeserver signature must be valid.
b. List of nonces must include the nonce this Secondary sent in the last version report.
c. The current time must be greater than the previous downloaded time.
d. If all checks pass, then save the new time and generate a new token.
e. Otherwise, reuse previous token.

2. Verify metadata using full / partial verification.
a. (Discussed in more detail later.)
b. Result is a trustworthy hash and file length for the image. That allows us to validate the image.

3. If a secondary does not have additional storage, download image from
primary.

a. May use primary to backup previous working image, so it can restore in case this update fails.

63

Before Secondary installs an update (2)

4. Verify that the latest image matches the latest metadata.
a. Check that the image matches the hash and length for it, obtained from the validated metadata.
b. If all checks pass, overwrite the previous with the latest metadata. If there is additional storage,

overwrite the previous with the latest image.
c. Otherwise, if some check failed, and there is no additional storage, then restore the previous image

from the backup on the primary.

5. Send the next version report to the primary.
a. Include the next token for the time server.
b. Include the ECU version manifest, which contains: (1) the ECU identifier, (2) the previous and current

times, (3) any security attack detected during an update, and (4) metadata about what is currently
installed.

64

Demo!

youtube.com/watch?v=Iz1l7IK_y2c

(or google Uptane Demonstration youtube)

