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Help prevent future side 
channel attacks on the 
kernel, and harden the 
kernel against other 
potential exploits.
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Mission Possible

@kcaccardi

★ not addressing specific CVEs or security 
gaps



▪ Make existing kernel address space randomization finer grained.
▪ Implement module address space randomization
▪ Allow security modules to selectively apply security mitigations when 

switching tasks
▪ Allow applications to protect memory areas containing secrets
▪ Remove cache breadcrumbs when returning error from system calls
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A few of our projects

@kcaccardi



Objective:

Increase kernel address space randomization by relinking the kernel object files at every boot.

Description:

▪ Leverage existing module loading code as in kernel linker
▪ Break the kernel up effectively into many modules and possibly leverage our randomized module 

text/vmalloc allocation algorithm.
▪ Create new section for modules to load at boot time pre-fs.
▪ Modify startup to link in modules at boot

Status:

Still in the Research phase, not committed yet to a design.

Kernel boot address randomization



▪ KASLR increases the difficulty of 
side channel attacks

▪ KASLR is already merged, and this 
strengthens what we’ve already 
adopted

Possible Benefits Possible Challenges 

▪ Even fine grained KASLR can be 
worked around

▪ A single vulnerability in a module 
might be exploited to find the kernel

▪ Increases complexity and reduces 
reproducibility of bugs.
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Objective:

Improve kernel address space randomization for module text sections

Description:

▪ Split the 1GB module text range into 2 - a randomized(fragmented) area, and a linearly allocated 
area.

▪ Randomize each loaded module with respect to each other
▪ If we fail to find adequate space in the randomized area, fall back to original algorithm in the linearly 

allocated space.

Status:

Under review upstream

Module text randomization



▪ Better load time performance in 
randomized memory locations

▪ Increased randomness (17 bits)
▪ If one module address leaks, the 

others cannot be immediately 
inferred 

Possible Benefits Possible Challenges

▪ One address leak in a single module 
might be sufficient for an exploit

▪ Increased memory usage
▪ Increases complexity and reduces 

reproducibility of bugs.
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Objective:

Allow user space applications to indicate that a page contains a secret that needs special protection

Description:

▪ Add a new flag to the mlock2() syscalls: MLOCK_SECRET
▪ Apply mitigations to both the memory area, and the process that mapped it
▪ Mitigations may include: make not dumpable, do not copy or fork, disable caching

Status:

PoC under development

Protect pages with secrets



Objective:

Make it harder to perform cache timing attacks on data left behind by system calls

Description:

▪ When a system call would return an error, randomly perturb the cache before returning back to 
userspace

▪ Only apply to specific set of errors (for example, -EPERM)

Status:

PoC under development

Remove cache breadcrumbs



▪ Cache contents will not be as easy 
to guess

▪ Pretty simple implementation

Possible Benefits Possible Challenges

▪ Performance will be impacted in the 
case of an error - assumption is that 
errors are not the fast path.

▪ Increased memory consumption with 
current PoC
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Objective:

Make it possible for an LSM module to determine if a particular security mitigation can be applied

Description:

▪ Create a LSM Hook which will allow a module to recommend whether to apply IBPB when switching 
tasks.

▪ Make a side channel LSM
▪ Check effective UID, capability sets, or namespaces
▪ Option to just always apply

Status:

PoC under development

LSM interface for side channel mitigations



@kcaccardi


