

Testing your AGL, yocto ptest, lava and more

ALS 2018

Jan-Simon Möller
Release Manager, AGL , The Linux Foundation

jsmoeller@linuxfoundation.org,
DL9PF @IRC and elsewhere

Image: public domain

Dipl.-Ing. Jan-Simon Möller

jsmoeller@linuxfoundation.org

'DL9PF' on #freenode

AGL Release Manager, EG CIAT Lead

mailto:jsmoeller@linuxfoundation.org

Introduction

Platform and Applications in AGL

● Platform
● Base system incl. libraries
● Built with the Yocto Project
● Application framework
● Other middleware

→ Part of
 filesystem image

● Applications & Services
● Services provide APIs
● Applications consume

APIs
● Built with SDK
● Packaged as .wgt

→ Installed at
 runtime.

What to do where ?

● You work on the
Platform if you deal
with a:
● system library
● kernel driver
● BSP
● framework (itself)

 → low level

● You work on the
Applications/Services
if you deal with a:

● Service (agl-service-*)
● Application

 → high level

''Platform''

● The outcome here is usually a filesystem image but it can
also be a package feed

● We have two options to inject tests in the process
● 'Early' as compile-time tests

– Actually a great option as we get feedback very early – at compile-time
– But this usually does not work well as we're cross-compiling and cannot

execute the generated binaries
● 'Late' once the image is created and booted

– This works well but requires the target to be deployed and booted
– For CI this needs to be automated

''Applications & Services''

● The outcome of the compilation is a *.wgt file
● Code is compiled for the target arch
● wgt files need to be installed at runtime

(dynamic IDs / smack labels for security)
● Thus tests need to be executed at runtime

Scope

● Let's explore
● How to add tests to AGL 'Platform'
● How to add tests to AGL 'Apps / Services'
● How to run the tests on the target
● What automation framework can be used
● and how reporting is done

How to add tests to the AGL 'platform'

Platform (1)

● The Platform is built using the YP
● As discussed – compile-time tests would allow as to fail

early , but we cannot execute the code if cross-compiled
● But what can we do:

● system libraries and programs usually come with a testsuite
(aka 'make test')

● you have your own testsuite ?
● let's use it !

Platform (2)

● The YP has a feature for this called ptest
● In principle a ptest is the 'make test' packaged
● It can then be deployed on the target and

executed using ptest-runner

Platform (3)
from zlib_1.2.11.bb:
SRC_URI += "file://run-ptest"
inherit ptest
do_compile_ptest() {

oe_runmake test
}
do_install_ptest() {

install ${B}/Makefile ${D}${PTEST_PATH}
install ${B}/example ${D}${PTEST_PATH}
install ${B}/minigzip ${D}${PTEST_PATH}
install ${B}/examplesh ${D}${PTEST_PATH}
install ${B}/minigzipsh ${D}${PTEST_PATH}

Remove buildhost references...
sed -i -e "s,--sysroot=${STAGING_DIR_TARGET},,g" \

-e 's|${DEBUG_PREFIX_MAP}||g' \
 ${D}${PTEST_PATH}/Makefile

}
RDEPENDS_${PN}-ptest += "make"

wrapper script for target

compilation procedure
for testsuite

install test binaries

adapt scripts/path
to target execution

if necessary

declare (undetectable)
 runtime dependencies
 for tests (e.g. make)

Platform (4)

● How is it added to the filesystem ?
● To add package testing to your build,

set the DISTRO_FEATURES and EXTRA_IMAGE_FEATURES

DISTRO_FEATURES_append = " ptest"
EXTRA_IMAGE_FEATURES += "ptest-pkgs"

● Shorthand is the agl-ptest feature for aglsetup.sh
● All ptest files are installed in

/usr/lib/<package>/ptest

Platform (5)

● How is it executed ?
● The "ptest-runner" package installs a

"ptest-runner" which loops through all installed
ptest test suites and runs them in sequence.

How to add tests to AGL
'Apps / Services'

Image: CC BY 2.0, https://www.flickr.com/photos/kevandotorg/

Applications and Services (1)

● For the applications and services, we actually
face multiple areas
● we need to test the highlevel API calls of the

services
● we need to test the applications
● we want reports on the code coverage

Applications and Services (2)

● For testing the highlevel calls, there is work in
progress to use lua scrips for this task:

● https://github.com/iotbzh/afb-test
● https://github.com/iotbzh/afb-test/blob/master/README.md
● https://github.com/iotbzh/afb-test/tree/master/conf.d/project/lua.d

● Final goal:
add it as part of the application-templates

https://github.com/iotbzh/afb-test
https://github.com/iotbzh/afb-test/blob/master/README.md
https://github.com/iotbzh/afb-test/tree/master/conf.d/project/lua.d

Applications and Services (3)

● gcov based code-coverage reporting
● requires a separate build / binary
● executed on the targed, produces *.gcov files for

each source file
● Work done to integrate this also into the

makefiles of the app templates as well.

Applications and Services (4)

● Common to all:
● they need to be executed on the target
● partially with performance penalty (gcov)
● for automation, this means we add a wrapper script to

each service or application to exec the procedure
● This is being called similar or equal

to the ptest-runner
● Executed in the CIAT infra

How to run the tests on the target

How to run it on the target (1)

● Manual:
● Platform:

– ptest: either by ptest-runner or
 call run-ptest script directly

– All ptest files are installed in /usr/lib/<package>/ptest
● Applications/Services

– wrapper script required as entry point for CI (alike ptest)
– tbd if this is part of app-templates

How to run it on the target (2)

● Common issues:
● needs to run on target
● we need a common reporting

– agreement is to use the KernelCI/Fuego json format
– alternative: tap

● Join the conversation and the upcoming calls

What automation framework(s)
can be used

A look back … :

The AGL CI infra overview

LAVA

● AGL uses LAVA and hosts an instance on
https://lava.automotivelinux.org

● Current remote labs:
● lab-AGL-core
● lab-baylibre
● lab-iotbzh

LAVA

sample-job.yaml● Is a yaml style file
● contains

● metadata for the job
● action/deploy section

– files to be used
● boot section
● test section

metadata, notifier

action / deploy

boot

test

Test section

● One or multiple
● inline
● from git repo
● uses yaml files
● lava-test-* are markers

– for visualizing in LAVA
– for visualizing in kernelCI
– for cross-referencing

Test section details (inline/git)

- test:
 [..]
 definitions:
 - repository:
 metadata:
 format: Lava-Test Test Definition 1.0
 name: smoke-tests-basic
 description: "Basic test command for AGL images"
 run:
 steps:
 - agl-basic-test-shell-command
 from: inline
 name: agl-dut-inline-basic
 path: inline/agl-dut-inline-fake-filename.yaml
 - repository: git://git.automotivelinux.org/src/qa-testdefinitions.git
 from: git
 path: test-suites/short-smoke/smoke-tests-basic.yaml
 name: smoke-tests-basic
 - repository: https://git.linaro.org/lava-team/lava-functional-tests.git
 from: git
 path: test-suites/short-smoke/service-check.yaml
 name: service-check

Example: add a 'systemd service up' check

● https://git.automotivelinux.org/src/qa-testdefinitions/tree/
test-suites/short-smoke/service-check.yaml

[...]
run:

 steps:

 - "cd common/scripts"

 - "./service-check-gfx.sh"

https://git.automotivelinux.org/src/qa-testdefinitions/tree/

Example: add a 'systemd service up' check

● https://git.automotivelinux.org/src/qa-testdefinitions/tree/
common/scripts/service-check-gfx.sh

https://git.automotivelinux.org/src/qa-testdefinitions/tree/

Now its your turn:

● We need you to add your service checks !
● in above script

● We need you to add your testsuites !
● in qa-testdefinitions

● More details in my talk from AMM 2017 !

and how reporting is done

KernelCI

● We use KernelCI to present the results
● https://kernelci.automotivelinux.org
● e.g.:

https://kernelci.automotivelinux.org/test/board
/r8a7796-m3ulcb/job/AGL-kernel-
tree/kernel/AGL-gerrit-14179-1/

https://kernelci.automotivelinux.org/

KernelCI (2)

KernelCI (3)

● Next steps:
● enhance WebUI
● Cross-references

Whats next ?

Filling the gaps :

QA

Thank you.

Contact:

jsmoeller@linuxfoundation.org

References

● 2017 AMM Talk on writing new tests:
http://bit.ly/2ll5SVy

● ptest: https://wiki.yoctoproject.org/wiki/Ptest
● gcov wip: http://bit.ly/2M4CWMQ
● Writing tests for lava: http://bit.ly/2ywcDgQ

http://bit.ly/2ll5SVy
http://bit.ly/2M4CWMQ
http://bit.ly/2ywcDgQ

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

