Testing your AGL, yocto ptest, lava and more

ALS 2018

Jan-Simon Moller
Release Manager, AGL , The Linux Foundation

jsmoeller @linuxfoundation.org,
DL9PF @IRC and elsewhere

<o D\ AUTOMIOTIVE
= -\ GRADELINUX
Image: public domain ©

Dipl.-Ing. Jan-Simon Moller
jsmoeller@linuxfoundation.org
'DLOPF' on #freenode

AGL Release Manager, EG CIAT Lead

|
C.L O\ AUTOMIOTIVE
AGAY: it

mailto:jsmoeller@linuxfoundation.org

66

Introduction

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

Platform and Applications in AGL

* Platform * Applications & Services
* Base system incl. libraries * Services provide APIs
* Built with the Yocto Project * Applications consume
* Application framework APls
« Other middleware * Built with SDK

* Packaged as .wgt

— Part of — Installed at
fllesystem image runtime.

|
C.L O\ AUTOMIOTIVE
SN it

What to do where ?

* You work on the * You work on the
Platform if you deal Applications/Services
with a: if you deal with a:

° system library * Service (agl-service-*)
* kernel driver » Application
- BSP

* framework (itself)

- low level - high level

|
Cuhe 2\ AUTOMATIVE
m GRADE LINUX

"Platform”

* The outcome here is usually a filesystem image but it can
also be a package feed

* We have two options to inject tests in the process

* 'Early’ as compile-time tests

— Actually a great option as we get feedback very early — at compile-time

— But this usually does not work well as we're cross-compiling and cannot
execute the generated binaries

* 'Late’ once the image is created and booted

— This works well but requires the target to be deployed and booted

— For CI this needs to be automated

|
<. L O\ AUTOMEITIVE
SN it

"Applications & Services’

* The outcome of the compilation is a *.wgt file
* Code is compiled for the target arch

* wgt files need to be installed at runtime
(dynamic IDs / smack labels for security)

* Thus tests need to be executed at runtime

@] AUTOMIITIVE
= 7 -\ GRADELINUX

* Let's explore

* How to add tests to AGL 'Platform’
* How to add tests to AGL ‘Apps / Services'

* How to run the tests on the target
* What automation framework can be used

* and how reporting is done

|
C.L O\ AUTOMIOTIVE
SN it

66

How to add tests to the AGL 'platform’

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

Platform (1)

* The Platform is built using the YP

* As discussed — compile-time tests would allow as to fail
early , but we cannot execute the code if cross-compiled

 But what can we do:

* system libraries and programs usually come with a testsuite
(aka 'make test’)

* you have your own testsuite ?

* let's useit!

|
<. L O\ AUTOMEITIVE
SN it

Platform (2)

* The YP has a feature for this called ptest
* In principle a ptest is the 'make test' packaged

* It can then be deployed on the target and
executed using ptest-runner

<G AUTOMIITIVE
_ "/ -\ GRADELINUX

Platform (3)

from zlib_1.2.11.bb: ~ \wrapper script for target
SRC_URI += "file://run-ptest" —

inherit ptest

do_compile ptest() { compilation procedure
oe runmake test ‘:::::;\iii:i::j for testsuite

}

do_install_ptest () { T
install ${B}/Makefile ${D}${PTEST_ PATH} l install test binaries
install ${B}/example ${D}${PTEST PATH}

install ${B}/minigzip $S{D}S{PTEST_PATH}
install ${B}/examplesh ${D}S${PTEST PATH}

: .. adapt scripts/path
11 ${B h ${D}${PTEST PATH .
install ${B}/minigzipsh ${D}3{ - ¥ to target execution

If necessary

Remove bUlldhOst re ferences L. > el T
sed -i -e "s,—--sysroot=${STAGING_DIR TARGET},,g" \

—e 's|${DEBUG_PREFIX MAP}||g' \ declare (undetectable)
${D}${PTEST_PATH}/Makefile runtime dependencies

} ~ fortests (e.g. make)

RDEPENDS_$ {PN}-ptest += "make" — {1 N\ AUTOMATIVE
‘ ./_ GRADE LINUX

Platform (4)

* How is it added to the filesystem ?

* To add package testing to your build,
set the DISTRO_FEATURES and EXTRA_IMAGE_FEATURES

DISTRO_ FEATURES_append = " ptest”
EXTRA IMAGE_FEATURES += '"ptest—-pkgs"

* Shorthand is the agl-ptest feature for aglsetup.sh

* All ptest files are installed in
/usr/lib/<package>/ptest

|
C.L O\ AUTOMEOTIVE
m GRADE LINUX

Platform (5)

* How is it executed ?

* The "ptest-runner’ package installs a
"ptest-runner” which loops through all installed
ptest test suites and runs them in sequence.

|
C.L O\ AUTOMIOTIVE
SN it

66

How to add tests to AGL
'Apps / Services'

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

wEIHTRN & RN

AUTOMLTIVE
Image: CC BY 2.0, https://www.ickr.com/phté%ﬁ@@lﬁdotorg/

Applications and Services (1)

* For the applications and services, we actually
face multiple areas

* we need to test the highlevel API calls of the
services

* we need to test the applications

* we want reports on the code coverage

|
<. L O\ AUTOMEITIVE
SN it

Applications and Services (2)

* For testing the highlevel calls, there is work in
progress to use lua scrips for this task:

* https://github.com/iotbzh/afb-test

* https://github.com/iotbzh/afb-test/blob/master/README.md
* https://github.com/iotbzh/afb-test/tree/master/conf.d/project/lua.d

* Final goal:
add it as part of the application-templates

|
<. L O\ AUTOMEITIVE
SN it

https://github.com/iotbzh/afb-test
https://github.com/iotbzh/afb-test/blob/master/README.md
https://github.com/iotbzh/afb-test/tree/master/conf.d/project/lua.d

Applications and Services (3)

* gcov based code-coverage reporting

* requires a separate build / binary

* executed on the targed, produces *.gcov files for
each source file

* Work done to integrate this also into the
makefiles of the app templates as well.

|
C.L O\ AUTOMIOTIVE
SN it

Applications and Services (4)

e Common to all:

* they need to be executed on the target
* partially with performance penalty (gcov)

* for automation, this means we add a wrapper script to
each service or application to exec the procedure

* This is being called similar or equal
to the ptest-runner

 Executed in the CIAT infra

|
C.L O\ AUTOMIOTIVE
SN it

66

How to run the tests on the target

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

How to run it on the target (1)

* Manual:

e Platform:

— ptest: either by ptest-runner or
call run-ptest script directly

- All ptest files are installed in /usr/lib/<package>/ptest
* Applications/Services

- wrapper script required as entry point for Cl (alike ptest)
- tbd if this is part of app-templates

|
C.L O\ AUTOMIOTIVE
SN it

How to run it on the target (2)

* Common issues:

* needs to run on target

* we need a common reporting

- agreement is to use the KernelCl/Fuego json format
- alternative: tap

 Join the conversation and the upcoming calls

|
C.L O\ AUTOMIOTIVE
SN it

66

What automation framework(s)
can be used

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

A look back ...:

l Gerrit ~ SPDX
J\ Fossology
Jenkins (Build) ~——evaltooling
v Fuego
e.g. AGL XDS ("
7 WIP "* Remote Board Iﬁ)
f SDK B S D - Lava —
L - Test & Debug App (lava) \/ - » Remote Board La
T on board =
| remotely
RN A openQA ?
VM) .« < <« < Ultesting ?
——option/Hater

<G AUTOMEITIVE
~ ¢ -\ GRADELINUX

The AGL CIl infra overview

| Build
Build Managemen| .
. (jenkins) ¢ # T
e
Fuego S
Short / Low .
High Level Tests
Build Artifacts Level Tests (g Reporting) t
(kernel, rootfs,
images) _
' ¢ ¢
Gerrit Server | T ey
AGL Core . AGLMember | ...
LAVA Master ' LAVA Lab
Git Repos LAVA Slave LAVA Slave LAVA Slave LAVA Slave
| Feedback 4 oo AN - P
DUT DUT DUT DUT
T e e ‘ ...
Webfrontend -f——Results Database|-4

<G AUTOMIITIVE
_ "/ -\ GRADELINUX

LAVA

* AGL uses LAVA and hosts an instance on
https://lava.automotivelinux.org

 Current remote labs:

* lab-AGL-core

* lab-baylibre

e |ab-iotbzh

¢ LAVA A Home all Results + @& Scheduler ~ 4 APl ~ @ Help

Welcome to LAVA

LAVA is an automated validation architecture primarily aimed at testing deployments of
current range of boards (device types) supported by this LAVA instance can be seen on 't
available for tests and currently running jobs.

LAVA components

e Il Results - viewing results of tests run by you or others.

e @ Scheduler - jobs are scheduled on available devices and the scheduler pages a
e 4 API - information on how to interact with LAVA and export data from LAVA usin
e @ Help - documentation on using LAVA, worked examples and use cases, develof

e & Profile - you are logged in as dI9pf. Your profile provides access to jobs you ha
crthecrrintione

LAVA

B | * Remote Board Lab
; Lava f

. (Iava) “» Remote Board Lab - SamDIE'jOb.yamI
e metadata for the JOb metadata, notifier
e action/deploy section ¥ %

- files to be used
* boot section

* test section action / deploy

boot

test

mAUTOMﬂTIVE
(L \ GRADELINUX

Test section

- test:
timeout:
minutes: 2
definitions:
° - repository:
* One or multiple
format: Lava-Test Test Definition 1.0
name: inline-test

° in Iine description: "Inline test to validate test framewrok health"
fs:ebian
* from git repo ronntions1

= Uses yaml ﬁ IeS i.t::\ﬁ.r;—tesat—set start set-pass
- lava-test-case always-pass --shell true
- lava-test-set stop set-pass

L Iava-test-* are markers - lava-test-set start set-fail
- lava-test-case always-fail --shell false

. . . - lava-test-set stop set-fail
- for visualizing in LAVA froms intine '
name: health-test
path: dinline/health-test.yaml

- for visualizing in kernelCl

- test:
- for cross-referencing definitions:

- repository: https://git.automotivelinux.org/src/qa-testdefinitions
from: git
path: test-suites/short-smoke/busybox.yaml
name: busybox

- repository: https://git.automotivelinux.org/src/qa-testdefinitions
from: git
path: test-suites/short-smoke/smoke-tests-basic.yaml
name: smoke-tests-basic

- repository: https://git.automotivelinux.org/src/qa-testdefinitions

Test section details (inline/git)

- test:
[..]
definitions:
- repository:
metadata:

format: Lava-Test Test Definition 1.0
name: smoke-tests-basic
description: "Basic test command for AGL images"
run:
steps:
- agl-basic-test-shell-command
from: inline
name: agl-dut-inline-basic
path: inline/agl-dut-inline-fake-filename.yaml
- repository: git://git.automotivelinux.org/src/qa-testdefinitions.git
from: git
path: test-suites/short-smoke/smoke-tests-basic.yaml
name: smoke-tests-basic
- repository: https://git.linaro.org/lava-team/lava-functional-tests.git
from: git
path: test-suites/short-smoke/service-check.yaml
name: service-check

<G AUTOMIITIVE
GRADE LINUX

Example: add a 'systemd service up' check

* https://git.automotivelinux.org/src/qa-testdefinitions/tree/
test-suites/short-smoke/service-check.yaml

[...]

run:
steps:
- "cd common/scripts”

- "./service-check-gfx.sh"

|
C.L O\ AUTOMIOTIVE
SN it

https://git.automotivelinux.org/src/qa-testdefinitions/tree/

Example: add a 'systemd service up' check

* https://git.automotivelinux.org/src/qa-testdefinitions/tree/
common/scripts/service-check-gfx.sh

0~ O A WNM

WININNNNNMNNNNNREHRBRREBREEKEERR
©® W E=-NOWULHWNIEKEO®IOLOBNOWULBRWNIERKO®®O

#!/bin/bash

export LANG=C
export TERM=dumb

REQUIREDSOCKETS="cynara.socket dbus.socket security-manager.socket"”
REQUIREDSERVICES="afm-system-daemon.service connman.service ofono.service weston.service homescreen.service bluetooth.service"

ALL="${REQUIREDSOCKETS} ${REQUIREDSERVICES}"
RESULT="unknown"

add delay for services to fully start
sleep 5

for i in ${ALL} 3 do
echo -e "\n\n#######4##4 Test for service ${i} being active ########## \n\n"

systemctl dis-active ${i} >/dev/null 2>&1
if [$7 -eq ©] 3 then
RESULT="pass"
else
RESULT="fail"
fi

lava-test-case ${i} —-result ${RESULT}
systemctl status ${i} || true
echo -e "\n\n"
AUTOMITIVE
echo -e "\n\n#######44#4# Result for service ${i} : SRESULT ######4#4# \n\n" GRADE LINUX
done

https://git.automotivelinux.org/src/qa-testdefinitions/tree/

Now Its your turn:

* We need you to add your service checks!
* in above script
* We need you to add your testsuites !

* in ga-testdefinitions

* More details in my talk from AMM 2017!

|
C.L O\ AUTOMIOTIVE
SN it

66

and how reporting is done

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

KernelCl

* We use KernelCl to present the results
* https://kernelci.automotivelinux.org

* e.g.:
https://kernelci.automotivelinux.org/test/board
/r8a7796-m3ulcb/job/AGL-kernel-
tree/kernel/AGL-gerrit-14179-1/

<G AUTOMIITIVE
£ ./_ GRADE LINUX

https://kernelci.automotivelinux.org/

KernelCl (2)

A Home a2 JObs & Builds & Boots £ SoCs Qs Tests P a8 Compare ? iInfo

Details for Tree «AGL-kernel-tree» - AGL-gerrit-14179-1

Board r8a7796-m3ulcb 0o / 0 / O
Tree AGL-kerneltree — 2-
Git branch agl-branch
Git describe AGL-gerrit-14179-1 — 2-©
GitURL @
Git commit @
Date 2018-06-05

«AGL-core-lab-1»

25 J reports per page

Test suite name Test suite ID Total test sets Test Results
busybox 5b161a6d19bd3200370cad8f ° o 1 0 O
service-check 5b161a6¢c19hd3200370cad84 o o 6 3 0
smoke-tests-basic 5b161a6b19bd3200370cad7d © @+ 1 o
health-test 5b161a6a19hd3200370cad78 o o 11 0
yocto-ptest 5b161a6919bd3200370cad75 o o 0 0 1
lava E5h161a6719hd3200370cad5 & & 22 0o o

Test details for test suite «service-check» (acL-core-lab-1)

Lab name
Board

Tree

Git branch
Git describe
Defconfig
Date

Test Reports

Test set: default
Test Case Name
bluetooth.service
homescreen.service
weston.service
ofono.service
connman.service
afm-system-daemon.service

security-manager.socket

AGL-core-lab-1fl Status
r8a7796-m3ulcb fl Architecture
AGL-kernel-tree — & Errors
agl-branch Warnings
AGL-gerrit-14179-1 — © Test time

defconfig+CONFIG_AGL=y
2018-06-05 05:06:52 UTC

Boot & Test log

Measurements

txt(@ — htiml &

Date
2018-06-05
2018-06-05
2018-06-05
2018-06-05
2018-06-05
2018-06-05

2018-06-05

Status

<< < Y <Y >

KernelCl (3)

* Next steps:

* enhance WebUI

 Cross-references

|
C.L O\ AUTOMETIVE
m GRADE LINUX

66

Whats next ?

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

Filling the gaps :

l Gerrit ~ SPDX
J\ Fossology
Jenkins (Build) ~——evaltooling
v Fuego
e.g. AGL XDS ("
7 WIP "* Remote Board Iﬁ)
f SDK B S D - Lava —
L - Test & Debug App (lava) \/ - » Remote Board La
T on board =
| remotely
RN A openQA ?
VM) .« < <« < Ultesting ?
——option/Hater

<G AUTOMEITIVE
~ ¢ -\ GRADELINUX

66

QA

66

|
<.\ AUTOMIOTIVE
m GRADE LINUX

Thank you. ¢ ¢

Contact:
Jsmoeller@linuxfoundation.org

66

|
C.L O\ AUTOMETIVE
m GRADE LINUX

References

* 2017 AMM Talk on writing new tests:
http://bit.ly/2lI5SVy

* ptest: https://wiki.yoctoproject.org/wiki/Ptest
* gcov wip: http://bit.ly/2M4CWMQ
* Writing tests for lava: http://bit.ly/2ywcDgQ

i AUTOMIITIVE
_ "/ -\ GRADELINUX

http://bit.ly/2ll5SVy
http://bit.ly/2M4CWMQ
http://bit.ly/2ywcDgQ

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

