
Patterns and Pains of
Migrating Legacy
Applications to Kubernetes
Josef Adersberger &
Michael Frank, QAware
Robert Bichler, Allianz Germany

@adersberger @qaware

Michael Frank,
Lead Developer,
QAware

Robert Bichler,
Project Manager,
Allianz Germany

Josef Adersberger,
Architect,
QAware

CIOLet’s bring
all our web
applications
onto a cloud
native Platform

COSTS

AVAILABILITY

PRODUCTIVITY

Digitalization
=> Agile
=> Cloud Native Platforms

Priorities:

(1) Time (1,5 years)

(2) Ops cost savings

(3) Migration costs

6

WE WERE BRAVE

WE FELT PAIN

WE DISCOVERED PATTERNS

9

❏ All 152 legacy applications
migrated and in production
within 17 months

❏ All security-hardened and
modernized to containerized
12-factor-apps

❏ Benefits leveraged: strong
business case, higher
availability, more agile teams

WE WERE SUCCESSFUL

The
Architect’s

Point of View

Patterns for success

12

Visibility

The Cloudalyzer

Tableau analysisMIGRATION
DATABASEQAVALIDATOR

SONARQUBE

EAM TOOL

QUESTIONNAIRES

JIRA

XLS

STATIC ANALYSIS
IBM MIGRATION TOOL

…

MIGRATION TASKS

BASIC
TOUR-DE-MIGRATION

SYSTEM
PROPERTIES

OWASP Scanner
jQAssistant

Questionnaire: Typical questions
• Technology stack (e.g. OS, appserver, jvm)
• Required resources (memory, CPU cores)
• Writes to storage (local/remote storage, write mode, volume)
• Special requirements (native libs, special hardware)
• Inbound and outbound protocols (protocol stack, TLS, multicast,

dynamic ports)
• Ability to execute (regression/load tests, business owner, dev

knowhow, release cycle, end of life)
• Client authentication (e.g. SSO, login, certificates)

15

Emergent design
of cloud native
software landscapes

Architecting hundreds of applications

• Application Blueprint: Describing target architecture and some rules & principles
• Migration Cookbook: Guidance on how to migrate the applications based on the application
blueprint. Single source of truth & know-how externalization

• Tour-de-Migration: Visiting all applications and collect open issues
• GoLive Readiness Checklist: Criteria to be checked before GoLive

APPLICATION BLUEPRINT
MIGRATION COOKBOOK

TOUR-DE-MIGRATION
GOLIVE READINESS CHECKLIST

Q1/17 Q2/17 Q3/17 Q4/17 Q1/18 Q2/18

APPLICATION MIGRATION

CLOUD PLATFORM SETUP

APPLICATION

HTTPD WEB LAYER

J2EE 1.4 APPSERVER

JVM 1.6

DB MQ HOST BATCH FS

CLIENTS

TLS 1.0+

TCP-Binary, WS, REST, C:D, LDAP
Corba, SMTP, FTP, NAS, …

RACF ESB

ONPREM DATA CENTER ONPREM DATA CENTER

DB MQ HOST BATCH FS RACF ESB

KUBERNETES / OPENSHIFT

DOCKER

JVM 8

INNER APPLICATIONS

AWS WEB LAYER

AWS

CLIENTS

TLS 1.2

all TLS 1.2

JEE 7 APPSERVER

SECURITY GATEWAY

OUTER APPLICATIONS
all 2-way TLS
1.2
& OIDC
identity token

Only data
In transit

The Blueprint

MONOLITH
INNER APPLICATIONS

OUTER APPLICATIONS

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

1+2

3

1) how to enhance cloud nativeness?

2) how to cut the monolith?

3) how to obtain an identity token?

BEFORE AFTER

MONOLITH
INNER APPLICATIONS

OUTER APPLICATIONS

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

1+2

3

1) how to enhance cloud nativeness?

2) how to cut the monolith?

3) how to obtain an identity token?

BEFORE AFTER

A sweet spot for legacy apps

Cloud Friendly Apps

… and enhance the
application according the
12 factors

Put the monolith into a
container: do not cut, do not
enhance with features in parallel

Sidecars to the rescue

Container patterns applied

• Log extraction
• Task scheduling

Sidecar: Enhance container behaviour

Ambassador: Proxy communication

Adapter: Provide standardized interface

• Configuration (ConfigMaps & Secrets to files)

• mTLS tunnel
• Circuit Breaking
• Request monitoring

Pod

Application Container

Pattern Container

Other Container

“Design patterns for container-based distributed systems”. Brendan Burns, David Oppenheimer. 2016

MONOLITH
INNER APPLICATIONS

OUTER APPLICATIONS

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

1+2

3

1) how to enhance cloud nativeness?

2) how to cut the monolith?

3) how to obtain an identity token?

BEFORE AFTER

Anti-pain rule: Don’t cut the monolith

Anti-pain rule: Don’t cut the monolith

MONOLITH

SOME MAGIC SAUCE

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

BEFORE AFTER

MONOLITH

MONOLITH
INNER APPLICATIONS

OUTER APPLICATIONS

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

1+2

3

1) how to enhance cloud nativeness?

2) how to cut the monolith?

3) how to obtain an identity token?

BEFORE AFTER

Security service to the rescue

MONOLITH
MONOLITH

SECURITY SERVICE

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

BEFORE AFTER

TOKEN
PROVIDER

IAM SYSTEMS

Adapting multiple
authentication
mechanisms to a
uniform OIDC token.

Kubernetes constraints

Initially we thought we’ll run into k8s restrictions
on our infrastructure like:
‣ No support for multicast
‣ No RWX PVC available

We did. But all required refactorings were
moderate effort and lead to a better architecture.

Pain

The
Lead Developer’s

Point of View

The almighty legacy framework
• “worry-free package framework” from
the early 2000s with about 500kLOC,
0% test coverage and multiple forks

• Strategies:
• the hard way: consolidate forks and
migrate manually and increase
coverage

• decorate with ambassadors,
sidekicks and adapters

• do not migrate parts and replace that
API within the applications

APPLICATION

ALMIGHTY LEGACY
FRAMEWORK

J2EE 1.4 APPSERVER

JVM 1.6

• from J2EE 1.4 to JEE 7 and Java 6 to 8
• add identity token check and relay
• modify session handling (synchronization)
• modify logging (to STDOUT)
• modify configuration (overwrite from ConfigMap)
• enforce TLS 1.2
• place circuit breakers
• predefined liveness and readiness probes

TIME-
OUTS

Timeouts: The pain
• Kinds

• Timeouts often too high. This ...
– causes bad user experience
– hurts the stability of your entire cloud

• Unable to distinguish errors from legitimate waits
• Diminishes self healing capabilities
• Promotes cascading failures

Con
Pool

Server
SocketgetConnection

connect

read

connection TTL/keepAlive

Timeouts: The pain
• Kinds

• Timeouts often too high. This ...
– causes bad user experience
– hurts the stability of your entire cloud

• Unable to distinguish errors from legitimate waits
• Diminishes self healing capabilities
• Promotes cascading failures

Con
Pool

Server
SocketgetConnection

connect

read

connection TTL/keepAlive

Timeouts: Recommendations
• Keep timeouts within the following ranges

– 1-3s for getConnection & connect
– 3-60s for socket/read - aim as low as possible
– 1-3min for TTL/KeepAlive of pooled connections

• Allow for dynamic DNS changes and dynamic scaling of
backend services

• Tradeoff between reaction time and performance
• Cascade timeouts

– outer layer highest
– inner layer lowest

60s

57s

54s

51s

LATENCY

Latency
• Pain: Dramatic increase in latency

You can't scale away latency!
– Every layer and new infrastructure component adds processing time
– Everything TLS1.2 secured adds processing time
– Physical distance: Cloud -> OnPrem

• Heaviest impact on n+1 patterns in applications
– Adjust batch/fetch size
– Parallel fetch
– Ultima ratio: on prem (lightweight) service layer close to DB

• General
– Performance experts in support team
– Caching
– Use diagnosability tools...

Latency
• Pain: Dramatic increase in latency

You can't scale away latency!
– Every layer and new infrastructure component adds processing time
– Everything TLS1.2 secured adds processing time
– Physical distance: Cloud -> OnPrem

• Heaviest impact on n+1 patterns in applications
– Adjust batch/fetch size
– Parallel fetch
– Ultima ratio: on prem (lightweight) service layer close to DB

• General
– Performance experts in support team
– Caching
– Use diagnosability tools...

DIAGNO-
SABILITY

Diagnosability

1. Early on - diagnose cloud platform issues upfront

2. Holistic - monitor and correlate everything
(infrastructure & apps, multiple levels, metrics & logs & traces)

3. Mandatory - everyone has to use it

4. Automatically - auto-instrumentation not involving devs

Metrics

Events / LogsTraces

• High effort to instrument for
valuable insights

• Scalability unclear for hundreds of
applications

• Applications have no time to run
their own Prometheus instance

• Scalability unclear for hundreds of
applications (Jaeger & ZipKin)

• Applications have no time to run
their own instance

• Scalability unclear (a lot of events lost)

• Applications have no time to run their
own EFK instance

• Non-standardized log format requires
custom log rewrite adapter but no
fluentd DaemonSet

Application
Diagnosability?

Metrics

Events / LogsTraces

… use APM tools like
Dynatrace and Instana

Want to move fast? Buy first, reduce cost later

Application
Diagnosability

SESSION
STATE

Session state

1. Session Stickiness: not within the cloud!
2. Session Persistence

• Existing DB: perf impact to high ☹
• Redis: no TLS out of the box and infrastructure required ☹

3. Session Synchronization
• App-Server: no dynamic peer lookup within k8s ☹
• Hazelcast: TLS only in paid enterprise edition ☹
• ...

Session synchronization with Ignite
• Apache Ignite as in-memory data grid �

– Embedded within application or standalone (in sidecar)
– Cumbersome but working k8s peer lookup

• Look out for ...
– Java serialization
– Legacy frameworks with custom session handling
– Prevent generating sessions for e.g. health check requests
– Applications putting large things into the “session” and misuse

session as cache

#@!!#@$

Other technical pain points
Pain Pattern

Legacy crypto without TLS 1.2 and
SNI support (e.g. Java 1.6)

● Find matching cipher suites
● Add a security proxy

Legacy apps violating HTTP
standards

Refactor

Access source URLs in redirect
loops (e.g. IDP login)

Use x-forwarded header and provide
according filter

No automated test suites ● Automated high-level tests
● Test generation (e.g. evosuite)?

The
Project Manager’s

Point of View

Patterns for success

Management support

❏ Strong management
support

❏ Clear scope
❏ Courage to drive the

change to cloud native
development

Project Marketing & Motivation
Identification & Celebration

Co-Location space

One LEAP-Area
❏ Support- &
❏ Industrialization team
❏ In case of required

support: Migration team

Industrialization

ARCHITECTURE TEAM

DOZENS OF MIGRATION PROJECTS RUNNING IN PARALLEL
(organized in release trains)

‣ Training sessions

‣ Support sessions

‣ Co-Location & remote

‣ Guidance / best practice sharing (cookbook,
sample application)

‣ Unified development environment (via
GitHub)

‣ Standard base images

‣ Pre-migrated frameworks

‣ Solutions: Security service, ambassadors

INDUSTRIALIZATION TEAM

‣ Application blueprint
‣ Migration database

SUPPORT TEAM

‣ Feedback

Transparency & information radiators
App-Support

Activities & Milestones

Quality

GoLive Planning

Operational

