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CIOLet’s bring 
all our web 
applications
onto a cloud
native Platform
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AVAILABILITY

PRODUCTIVITY

Digitalization 
=> Agile 
=> Cloud Native Platforms



Priorities:

(1) Time (1,5 years)

(2) Ops cost savings

(3) Migration costs
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WE WERE BRAVE



WE FELT PAIN



WE DISCOVERED PATTERNS
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❏ All 152 legacy applications 
migrated and in production 
within 17 months

❏ All security-hardened and 
modernized to containerized 
12-factor-apps

❏ Benefits leveraged: strong 
business case, higher 
availability, more agile teams

WE WERE SUCCESSFUL



The 
Architect’s 

Point of View



Patterns for success
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Visibility



The Cloudalyzer

Tableau analysisMIGRATION 
DATABASEQAVALIDATOR

SONARQUBE

EAM TOOL

QUESTIONNAIRES

JIRA

XLS

STATIC ANALYSIS
IBM MIGRATION TOOL

…

MIGRATION TASKS

BASIC
TOUR-DE-MIGRATION

SYSTEM 
PROPERTIES

OWASP Scanner
jQAssistant



Questionnaire: Typical questions
• Technology stack (e.g. OS, appserver, jvm)
• Required resources (memory, CPU cores)
• Writes to storage (local/remote storage, write mode, volume)
• Special requirements (native libs, special hardware)
• Inbound and outbound protocols (protocol stack, TLS, multicast, 

dynamic ports)
• Ability to execute (regression/load tests, business owner, dev 

knowhow, release cycle, end of life)
• Client authentication (e.g. SSO, login, certificates)
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Emergent design 
of cloud native 
software landscapes



Architecting hundreds of applications

•  Application Blueprint: Describing target architecture and some rules & principles
•  Migration Cookbook: Guidance on how to migrate the applications based on the application 
blueprint. Single source of truth & know-how externalization

•  Tour-de-Migration: Visiting all applications and collect open issues
•  GoLive Readiness Checklist: Criteria to be checked before GoLive

APPLICATION BLUEPRINT
MIGRATION COOKBOOK

TOUR-DE-MIGRATION
GOLIVE READINESS CHECKLIST

Q1/17 Q2/17 Q3/17 Q4/17 Q1/18 Q2/18

APPLICATION MIGRATION

CLOUD PLATFORM SETUP



APPLICATION

HTTPD WEB LAYER

J2EE 1.4 APPSERVER

JVM 1.6

DB MQ HOST BATCH FS

CLIENTS

TLS 1.0+

TCP-Binary, WS, REST, C:D, LDAP
Corba, SMTP, FTP, NAS, …

RACF ESB

ONPREM DATA CENTER ONPREM DATA CENTER

DB MQ HOST BATCH FS RACF ESB

KUBERNETES / OPENSHIFT

DOCKER

JVM 8

INNER APPLICATIONS

AWS WEB LAYER

AWS

CLIENTS

TLS 1.2

all TLS 1.2

JEE 7 APPSERVER

SECURITY GATEWAY

OUTER APPLICATIONS
all 2-way TLS 
1.2
& OIDC
identity token

Only data 
In transit

The Blueprint



MONOLITH
INNER APPLICATIONS

OUTER APPLICATIONS

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

1+2

3

1) how to enhance cloud nativeness?

2) how to cut the monolith?

3) how to obtain an identity token?

BEFORE AFTER
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A sweet spot for legacy apps

Cloud Friendly Apps

… and enhance the
application according the 
12 factors

Put the monolith into a 
container: do not cut, do not 
enhance with features in parallel



Sidecars to the rescue



Container patterns applied

• Log extraction
• Task scheduling

Sidecar: Enhance container behaviour

Ambassador: Proxy communication

Adapter: Provide standardized interface

• Configuration (ConfigMaps & Secrets to files)

• mTLS tunnel
• Circuit Breaking
• Request monitoring

Pod

Application Container

Pattern Container

Other Container

“Design patterns for container-based distributed systems”. Brendan Burns, David Oppenheimer. 2016
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Anti-pain rule: Don’t cut the monolith



Anti-pain rule: Don’t cut the monolith

MONOLITH

SOME MAGIC SAUCE

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

BEFORE AFTER

MONOLITH
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Security service to the rescue

MONOLITH
MONOLITH

SECURITY SERVICE

BACKEND

CLIENTS

SECURITY GATEWAY

BACKEND

CLIENTS

BEFORE AFTER

TOKEN 
PROVIDER

IAM SYSTEMS

Adapting multiple 
authentication 
mechanisms to a 
uniform OIDC token. 



Kubernetes constraints

Initially we thought we’ll run into k8s restrictions 
on our infrastructure like:
‣ No support for multicast
‣ No RWX PVC available

We did. But all required refactorings were 
moderate effort and lead to a better architecture.



Pain



The 
Lead Developer’s 

Point of View



The almighty legacy framework
• “worry-free package framework” from 
the early 2000s with about 500kLOC, 
0% test coverage and multiple forks

• Strategies:
• the hard way: consolidate forks and 
migrate manually and increase 
coverage

• decorate with ambassadors, 
sidekicks and adapters

• do not migrate parts and replace that 
API within the applications

APPLICATION

ALMIGHTY LEGACY 
FRAMEWORK

J2EE 1.4 APPSERVER

JVM 1.6

• from J2EE 1.4 to JEE 7 and Java 6 to 8
• add identity token check and relay
• modify session handling (synchronization)
• modify logging (to STDOUT)
• modify configuration (overwrite from ConfigMap)
• enforce TLS 1.2
• place circuit breakers
• predefined liveness and readiness probes



TIME-
OUTS



Timeouts: The pain
• Kinds

• Timeouts often too high. This ...
– causes bad user experience
– hurts the stability of your entire cloud

• Unable to distinguish errors from legitimate waits
• Diminishes self healing capabilities
• Promotes cascading failures

Con
Pool

Server 
SocketgetConnection

connect

read

connection TTL/keepAlive
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Timeouts: Recommendations
• Keep timeouts within the following ranges

– 1-3s for getConnection & connect
– 3-60s for socket/read - aim as low as possible
– 1-3min for TTL/KeepAlive of pooled connections

• Allow for dynamic DNS changes and dynamic scaling of 
backend services

• Tradeoff between reaction time and performance
• Cascade timeouts 

– outer layer highest 
– inner layer lowest

60s

57s

54s

51s



LATENCY



Latency
• Pain: Dramatic increase in latency

You can't scale away latency!
– Every layer and new infrastructure component adds processing time
– Everything TLS1.2 secured adds processing time
– Physical distance: Cloud -> OnPrem

• Heaviest impact on n+1 patterns in applications
– Adjust batch/fetch size
– Parallel fetch
– Ultima ratio: on prem (lightweight) service layer close to DB

• General
– Performance experts in support team
– Caching
– Use diagnosability tools...
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DIAGNO-
SABILITY



Diagnosability

1. Early on - diagnose cloud platform issues upfront

2. Holistic - monitor and correlate everything 
(infrastructure & apps, multiple levels, metrics & logs & traces)

3. Mandatory - everyone has to use it

4. Automatically - auto-instrumentation not involving devs



Metrics

Events / LogsTraces

•  High effort to instrument for 
valuable insights

• Scalability unclear for hundreds of 
applications

• Applications have no time to run 
their own Prometheus instance

• Scalability unclear for hundreds of 
applications (Jaeger & ZipKin)

• Applications have no time to run 
their own instance

• Scalability unclear (a lot of events lost)

• Applications have no time to run their 
own EFK instance

• Non-standardized log format requires 
custom log rewrite adapter but no 
fluentd DaemonSet

Application
Diagnosability?



Metrics

Events / LogsTraces

… use APM tools like
Dynatrace and Instana

Want to move fast? Buy first, reduce cost later

Application
Diagnosability 



SESSION
STATE



Session state

1. Session Stickiness: not within the cloud!
2. Session Persistence

• Existing DB: perf impact to high ☹
• Redis: no TLS out of the box and infrastructure required ☹

3. Session Synchronization
• App-Server: no dynamic peer lookup within k8s ☹
• Hazelcast: TLS only in paid enterprise edition ☹
• ...



Session synchronization with Ignite
• Apache Ignite as in-memory data grid �

– Embedded within application or standalone (in sidecar)
– Cumbersome but working k8s peer lookup

• Look out for ...
– Java serialization
– Legacy frameworks with custom session handling
– Prevent generating sessions for e.g. health check requests
– Applications putting large things into the “session” and misuse 

session as cache



#@!!#@$



Other technical pain points 
Pain Pattern

Legacy crypto without TLS 1.2 and 
SNI support (e.g. Java 1.6)

● Find matching cipher suites
● Add a security proxy

Legacy apps violating HTTP 
standards

Refactor

Access source URLs in redirect 
loops (e.g. IDP login)

Use x-forwarded header and provide 
according filter

No automated test suites ● Automated high-level tests
● Test generation (e.g. evosuite)?



The 
Project Manager’s 

Point of View



Patterns for success



Management support

❏ Strong management 
support

❏ Clear scope
❏ Courage to drive the 

change to cloud native 
development



Project Marketing & Motivation
Identification & Celebration 



Co-Location space 

One LEAP-Area 
❏ Support- & 
❏ Industrialization team
❏ In case of required 

support: Migration team



Industrialization



ARCHITECTURE TEAM

DOZENS OF MIGRATION PROJECTS RUNNING IN PARALLEL
(organized in release trains)

‣ Training sessions

‣ Support sessions

‣ Co-Location & remote

‣ Guidance / best practice sharing (cookbook, 
sample application)

‣ Unified development environment (via 
GitHub)

‣ Standard base images

‣ Pre-migrated frameworks

‣ Solutions: Security service, ambassadors

INDUSTRIALIZATION TEAM

‣ Application blueprint
‣ Migration database

SUPPORT TEAM

‣ Feedback



Transparency & information radiators
App-Support 

Activities & Milestones 

Quality

GoLive Planning

Operational






