
Package Management and 
Distribution in a Cloud World
Jose Miguel Parrella



About me

• Jose Miguel Parrella
– GitHub: @bureado

• Principal Program Manager, 
Office of the CTO, Microsoft 
Azure

• Linux and open source 
enthusiast for 15+ years

• Debian Developer, career 
distro-builder

https://github.com/bureado


Package management in open source:

always changing

• 15 years ago: APT and RPM

• Programming languages: from 
CPAN and PyPI to NPM and Golang 
packages

• Next-generation package 
management: Flatpak, Snaps, Nix, 
etc.

• Container image specification & 
hub/store workflow

• Use cases where provenance is 
controlled by final distributor (e.g., 
embedded)

Ecosystem Debian Upstream As a %
Ruby 1100 9300 11.83%
Perl 3700 31000 11.94%

Python 3700 118000 3.14%
Node.js 1300 350000 0.37%

All-up libs 30K 2.8M 1.07%
Source: libraries.io and APT lists



It’s getting busy out there…



Why is this challenging now?

• Most IT Professionals working with Linux and 
open source technologies are not using 
modern package managers (or containers!)
– A significant portion of the Enterprise IT 

budget depends on a historical decision: APT 
or RPM

• The general community sentiment (sysadmin, 
DevOps, SRE, etc.) on this evolving technical 
story is skeptical



Why do these technologies exist?
We don’t know

• Push the packaging responsibility upstream?
• Be able to distribute non-free software more effectively 

and/or monetize?
• Provide additional container and application security 

capabilities?
• Reduce the size of a Linux distribution?
• Make it easier to package for Linux by removing 

dependency tracking?
• Immutable, composable and reproducible systems?
• Support cloud distribution models?
• Make the software experience easier and better for Linux 

desktop users?



Questions to ask
Package formats and systems Distros

• Atomic unit of software distribution (snap, bundle, 
etc.)

• What the unit actually is (tarred source, squashfs, 
etc.)

• What the unit metadata describes (dependencies, 
origin, checksums, etc.)

• Where the unit comes from (repository equivalent)
• Core repository concepts (e.g., channels, 

governance, login, proprietary software, etc.)
• How are updates delivered?
• What’s the isolation/sandboxing story?
• Universe (size) and type of apps
• How packages are built (developer tooling)
• Source vs. binary, binary caches, etc.

• Any components of the system not managed as a 
unit?

• Upgrade/rollback strategy (e.g., dual partitions for 
CoreOS)

• What software is available (e.g., in bundles) and what 
for?

• How are end users expected to bring their 
applications?

• How system state is described (e.g., version hashes, 
all-up system release numbers)

• Coexistence with other packaging systems
• How is package provenance validated?



Analysis framework (for reference only)
Name Atomic unit Unit source Universe Isolation Runtimes Core value prop Use case focus Related Depends

Snap Snap 
(squashfs) Stores 1,500 (*)

AppArmor, 
offers classic 

mode
Core snap Autoupdates and 

bundling
Proprietary apps 

and IoT likely
Ubuntu 

Core Systemd

Flatpak Package 
(OSTree, OCI) Flathub 290 Sandbox plus 

bubblewrap

Runtimes
(GNOME, 

etc.)

Cross-distro 
portability

Desktop 
applications

OSTree
Atomic

AppStream

OSTree
Systemd

bubblewrap

Nix Paths Nixpkgs 6,500
None (other 
than the Nix 
store path)

N/A
Atomic upgrades 

and multi-
versioning

Universal, 
declarative 

systems
NixOS N/A

Guix Paths Hydra 7,660
None (other 

than the GNU 
store path)

N/A

Ease of use
Transactions

Build 
reproducibility

Easy packaging?

Universal GuixSD Guile

AppImage AppImage Distributed 150+ (*) to 
380

Optional via 
firejail N/A 1 app = 1 file Desktop 

applications Firejail N/A

swupd Bundles Repos 180 N/A
A few (e.g., 

perl, 
python)

No packages, 
binary deltas 

only

Deterministic 
upgrades in the 

cloud
Clear Linux N/A

https://uappexplorer.com/snaps
https://groups.google.com/a/opencontainers.org/forum/
https://flathub.org/apps/category/All
http://docs.flatpak.org/en/latest/available-runtimes.html
http://docs.flatpak.org/en/latest/introduction.html
http://docs.flatpak.org/en/latest/introduction.html
https://nixos.org/nix/about.html
https://nixos.org/nix/about.html
https://www.gnu.org/software/guix/packages/
https://www.gnu.org/software/guix/manual/html_node/Invoking-guix-challenge.html
https://www.gnu.org/software/guix/blog/2018/tarballs-the-ultimate-container-image-format/
https://bintray.com/probono/AppImages
https://appimage.github.io/apps/
https://clearlinux.org/documentation/clear-linux/reference/bundles/available-bundles


Standardization?



Key takeaways

• Do
– Evaluate (proof of concept) non-mainstream distros 

and package managers
• Ask

– What is our use case and does it match what this 
system/distro is trying to solve?

– What’s the transition path from existing APT/RPM 
tools, skills and investments to new systems?

• Discuss
– How can we implement effective governance for future 

package managers? (e.g., standards, coexistence)



Resources

• Additional reading:
– aka.ms/AA1nl2s

• E-mail
– jose@2063.me

• Twitter/GitHub
– @bureado

• Slides available on sched!

https://aka.ms/AA1nl2s
mailto:jose@2063.me
http://sched.co/EaYX



