
Optimizing Zlib on Arm:
The power of NEON
Adenilson Cavalcanti
ARM - San Jose (California)

@adenilsonc



Why zlib?

Zlib

Used everywhere (libpng, 
Skia, freetype, cronet, 
Firefox, Chrome, linux 
kernel, android, iOS, 
JDK, git, etc).

Old code base released 
in 1995.

Written in K&R C style.

Context

Lacks any optimizations 
for ARM CPUs.

Problem statement

Identify potential 
optimization candidates 
and verify positive effects 
in Chromium.



● Cloudflare
● Intel
● Zlib-ng

Previous art



● Performed some benchmarking.
● Contacted each project.
● Mixed results (1 project never replied back).

Before deepening the fork...



● Performed some benchmarking.
● Contacted each project.
● Mixed results (1 project never replied back).

None focused on decompression* or had ARM 
specific optimizations.

Before forking...

*Important for a Web Browser.



PNGs rely on zlib
● Transparent.
● Pre-filters.
● High-res.

Meet Mr. Parrot

Source: https://upload.wikimedia.org/wikipedia/commons/3/3f/ZebraHighRes.png 

https://upload.wikimedia.org/wikipedia/commons/3/3f/ZebraHighRes.png


Parrots are not created equal

Original: 2.7MB

Palette: 0.8MB

Zopfli: 2.6MB



Perf to the rescue



NEON: Advanced SIMD
(Single Instruction Multiple Data)



● Optional on ARMv7.
● Mandatory on 

ARMv8.

NEON



Registers
ARMv7
● 16 registers@128 bits: Q0 

- Q15.
● 32 registers@64bits: D0 - 

D31.
● Varied set of instructions: 

load, store, add, mul, etc.

ARMv8
● 32 registers@128 bits: Q0 - Q31.
● 32 registers@64bits: D0 - D31.
● 32 registers@32bits: S0 - S31.
● 32 registers@8bits: H0 - H31.
● Varied set of instructions: load, 

store, add, mul, etc.



An example: VADD.I16 Q0, Q1, Q2



Entropy & Compression



Entertaining definition

https://www.youtube.com/watch?v=l49MHwooaVQ 

https://www.youtube.com/watch?v=l49MHwooaVQ


Formal definition

Shannon Entropy

Where:
p_i: probability of character i appearing in the stream of characters.

https://en.wiktionary.org/wiki/Shannon_entropy 

https://en.wiktionary.org/wiki/Shannon_entropy


Practical explanation
a) HTML b) JPEG



Practical visualization
./binwalk -E file
a) HTML: 0.68 b) JPEG: 0.95



Decompression 
optimizations



Adler-32 checksum

https://en.wikipedia.org/wiki/Adler-32 

https://en.wikipedia.org/wiki/Adler-32


Adler-32 simplistic implementation

https://en.wikipedia.org/wiki/Adler-32 

https://en.wikipedia.org/wiki/Adler-32


Adler-32: problems

● Zlib’s Adler-32 was more than 7x faster than 
naive implementation.

● It is hard to vectorize the following computation:



Adler-32: technical drawing (Jan 2017)



Adler-32
‘Taps’ to the rescue

Assembly:
https://godbolt.org/g/KMeBAJ

https://godbolt.org/g/KMeBAJ


Adler-32: Intel got some love too!

https://bugs.chromium.org/p/chromium/issues/detail?id=688601 

https://bugs.chromium.org/p/chromium/issues/detail?id=688601


fast_chunk
● Second candidate in the perf 

profiling was inflate_fast.
● Very high level idea: perform 

long loads/stores in the byte 
array.

● Average 20% faster!
● Shipping on M62.
● Original patch by Simon 

Hosie.

https://bugs.chromium.org/p/chromium/issues/detail
?id=697280 

https://bugs.chromium.org/p/chromium/issues/detail?id=697280
https://bugs.chromium.org/p/chromium/issues/detail?id=697280


CRC-32

https://bugs.chromium.org/p/chromium/issues/detail?id=709716 

● YMMV on PNGs (from 1 to 5%).
● Remember it is used while decompressing web 

content (29% boost for gzipped content).
● ARMv8-a has a crc32 instruction (from 3 to 10x faster 

than zlib’s crc32 C code).
● Shipping on M66.

https://bugs.chromium.org/p/chromium/issues/detail?id=709716


Results: Chromium’s zlib*

* c-zlib



Arm: zlib format 1.4x



Arm: gzip format 1.5x



Arm: c-zlib X Vanilla



x86: c-zlib X Vanilla



We were missing compression...



Bonus: Compression on Arm



Slide-hash: NEON

https://chromium-review.googlesource.com/1136940 

● Using NEON 
instruction vqsubq.

● Works on 8x 16bits
 chunks.

● Perf gain of 5%.

https://chromium-review.googlesource.com/1136940


insert-string: crypto CRC-32

https://chromium-review.googlesource.com/c/chromium/src/+/1173262 

● Using ARMv8-a
instruction crc32.

● Works on 1x 32bits
 chunks.

● Perf gain of 24%.

https://chromium-review.googlesource.com/c/chromium/src/+/1173262


Arm: current state
● Compression: average 1.36x faster, but 1.4x faster for HTML.
● Decompression: average 1.6x faster (gzip), but 1.8x faster for HTML.



Conclusions



Conclusions
● There is plenty of life left even in an old code base.
● NEON optimizations can yield a *huge* impact.
● It pays up to work in a lower layer.
● OSS love: Intel got it too.



Chromium’s zlib: c-zlib
● Decompression: 1.7x to 2x faster.
● Compression: 1.3x to 1.4x faster.
● Both ARM & x86 are supported.
● Highly tested (i.e. cronet, fuzzers).
● Widely deployed (over 1 billion users).
● Open to performance & security patches.



Chromium’s zlib: c-zlib
● Decompression: 1.7x to 2x faster.
● Compression: 1.3x to 1.4x faster.
● Both ARM & x86 are supported.
● Highly tested (i.e. cronet, fuzzers).
● Widely deployed (over 1 billion users).
● Open to performance & security patches.

Zlib users should consider moving to Chromium’s zlib.



Resources

a) Slides: https://goo.gl/vaZA9o
b) Performance benchmarks: https://goo.gl/qLVdvh 
c) Code: 

https://cs.chromium.org/chromium/src/third_party/zlib/ 

https://goo.gl/vaZA9o
https://goo.gl/qLVdvh
https://cs.chromium.org/chromium/src/third_party/zlib/


Final words

“This is how the open-source model works: 
building upon the work of others is far more 
efficient than rewriting everything.”

Jean-loup Gailly (zlib author)

https://slashdot.org/story/00/03/10/1043247/jean-loup-gailly-on-gzip-go-and-mandrak
e 

https://slashdot.org/story/00/03/10/1043247/jean-loup-gailly-on-gzip-go-and-mandrake
https://slashdot.org/story/00/03/10/1043247/jean-loup-gailly-on-gzip-go-and-mandrake


Questions




