NNNNNNNNNNNNNNNNNN T AUTOMLTIVE
8 9PAPNEN SOURCE SUMMIT A ./_ LINUX SUMMIT

Migration of an Enterprise Ul Microservice System

from Cloud Foundry to Kubernetes

Tony Erwin, IBM
Jonathan Schweikhart, IBM

=P° B, o
N=rt A
]

1

THE
L LINUX
FOUNDATION

= ||on
| ||ON
—_—

« Overview of IBM Cloud Console Architecture

« What is Cloud Foundry? What is Kubernetes? Why Switch?
- Experiences And Lessons Learned During Migration

« Conclusion

Overview of IBM Cloud
Console Architecture

THE
L LINUX
FOUNDATION

IBM Cloud Console

- Large Ul serving as front-end to the IBM Cloud

) IBMCloud

« Lets users create, view, and manage
PaaS/laaS resources:
— Cloud Foundry apps & services
— Kubernetes clusters
— Virtual servers
— Bare metal

fyoag

* Provides additional functionality for:
— Registration/onboarding

— ldentity and Access Management (IAM) — e
— Billing/usage - -

e production 750
D O CS Aco-Cataloged Gemany axe prodwton 2088 o suppes
ace o s

IBM Cloud Console Architecture

» Started life about 5
years ago as a
monolithic Java

app Core Deployment or
* Now composed of Watson o

about 40 Node.js,

cloud-native

microservices + Funcs Clusters
more than 20, uService 1 uService 2 uService n-1
external plugins

as apps to Cloud)
Foundry (External Plugins)
* Currently deployed
as containers on
Kubernetes

Console Client

Backend APIs (CF, Containers, VMs, IAM, Billing/Usage, etc.)

LINUX
n FOUNDAUT\ON

What is Cloud Foundry?
What is Kubernetes?
Why Switch?

[s =

L_ A '3 . R

i S\ 7

‘. l % LINUX
3l lle\8lo T m [

What is Cloud Foundry*?

Provides a PaaS with an abstraction at the
application level

— Developers can focus on code rather than CLOUD FOUNDRY
underlying infrastructure I‘\ APPLICATION
w=é RUNTIME

« Leverages the Open Service Broker API to
make it easy to use services from apps

« Manages apps as Diego containers
(internally)

* Technically describing the Cloud Foundry Application Runtime which is one of the two open source components from the CF Foundation.

What is Kubernetes?

« Abstracts at the container level

* Provides many of the benefits of PaaS with
the flexibility of laaS

— Often referred to as laaS+

« Orchestrates computing, networking, and kubernetes

storage infrastructure on behalf of user
workloads

- Enables portability across infrastructure
providers

Why Did We Switch?

* Nothing “wrong” with CF
— Very easy to get apps running, relatively low learning curve, etc.

— Used in some way by at least half of the Fortune 500
* Kubernetes offers several advantages for our use case
— More granular control to better manage our large, complex microservice system

— Dedicated clusters to avoid performance/availability problems from friendly fire
* In fairness, CF can be installed in a dedicated manner as well (even on Kubernetes!)

— Simpler “front door” stack with built-in Ingress proxy to avoid extra network hops

— Private host names
* All apps in CF have public host names, so not possible to have a “private” microservice

— Private networking
+ Calls between microservices in CF require going out over the public internet

— Improved memory and CPU usage (dynamic allocation)
— Ability to run our own services (like Redis)
— Integrated monitoring with Prometheus

LINUX
n FOUND/E\ON

Experiences And Lessons
Learned During Migration

THE
[LINUX
FOUNDATION

Need to Dockerize

Node ‘ ‘ Diego
CF Flow Application * i - Container
Node Docker
Kube Flow > » | helm install

Application Image

Migrating Manifest to Helm

* Helm - Deployment
— Docker image
— CPU & memory
— Environment variables

* Helm — Service
— Single alias for the deployment

* Helm — Ingress
— Hostname/URL mapping to service

Deployment Configuration

* Cloud Foundry

— Configuration per deployment environment

* Kubernetes
— Helm cli makes hierarchical simple
— Global
— Global-<Environment>
— Cluster
— Cluster-<namespace>

Exposure of Microservices

* Cloud Foundry
— Public URL per microservice

— Each microservice has to protect against direct access
« Security concerns
« Common code repeated

 Kubernetes

— Microservice gets to choose exposure
» Service — Allows an internal only route to the application
* Ingress — Allows external routes to be defined to map to Services

— Protections take place at a higher level to allow
microservices to ignore exposure issues

Common Code Migration Problems

* Cloud Foundry assumptions

— Environment variable assumptions
- VCAP_SERVICES
 PORT
* Invalid OS name characters like hyphens

— URL format for intra-microservice communication
 CF: https://ace-common-production.us-south.bluemix.net
 Kubernetes: http://common

 URL construction vs URL variables

https://ace-common-production.us-south.bluemix.net/
http://common/

Installing a Local Redis with Stateful Sets

Cloud Foundry Kubernetes

C

— — Worker Node 1
1 e

—— R

— Worker Node 2
> hdB™

C

— — Worker Node 3
3

Monitoring in Kubernetes

Kubernetes Cluster

Worker Nodes

Prometheus

« CPU

* Memory

* Network

* File system
e Status

Kubernetes Cluster

Prometheus

Monitoring NGINX Ingress

* Nginx logs contain invaluable metrics about incoming calls
— Timestamp
— HTTP method
— HTTP status codes
— Headers
— URI
— Response time

* Implemented custom solution for accessing those metrics
— Configure nginx to log to syslog

— Create microservice that scrapes the syslog and exposes the data
to Prometheus

— Filter, monitor, and alert

Red/Black Deployments

Live URL

|

Red Ingress

e

Proxy

Ondeck URL

|

Black Ingress

Live URL

Proxy

Ondeck URL

—_

Red Ingress

e

Black Ingress

Built-in Liveness/Readiness Checks

 /readiness
— "l 'am ready to accept traffic”

— One time initialization checks
« Connections to resources (URLs, DBs, etc..)

— Periodic checks
* Circuit breakers
* Current status
« Content Throttling

* /liveness
— “I should keep living*
— Unrecoverable situations/Unexpected Failures
— “Have you tried turning it off and on again?”

Rolling Out Kubernetes

THE
L LINUX
FOUNDATION

Geo Load Balancing and Failover (CF)

* One global URL
(https://console.bluemix.net)

« Use Dyn geo load balancing to)
serve Ul from the nearest)
healthy region :
* If healthcheck in a region show: |™*™™ | = - B e

next closest healthy region
* Odds of all regions being down | == — —|

a problem, Dyn routes to the ? E"‘"; E""’F E

at the same time much less B [r— J— r:m;c
than one region being down K:I; f%% r:%

* Reduces regional latency

https://console.bluemix.net/

Geo Load Balancing and Failover (Migration)

* Needed to verify stability
of Kube clusters before
turning off CF
deployments in production

« Solution: Add Kube | —_ || = =9 — 1 .
clusters to Dyn rotation !

and run CF deployments - }
side-by-side with Kube — = e ’ °°°°°° ‘
deployments S — 1 —— 1 ¢ l

Geo Load Balancing and Failover (Final)

Once satisfied,
removed CF
deployments from
rotation and only
Kube deployments
remained

ccccccccccccc

eeeeeeeeeeee

Conclusion

THE
L LINUX
FOUNDATION

Conclusion

* CF is a great technology, but Kubernetes better
meets the needs of our microservice system

* Nothing is free, and we had to solve several new
problems along the way

* Allowed us to achieve greater performance,
scalability, reliability, and security than we had
before

Questions?

* Tony Erwin
— Email: aerwin@us.ibm.com
— Twitter: @tonyerwin

« Jonathan Schweikhart

— Email: [schweik@us.ibm.com

mailto:aerwin@us.ibm.com
https://twitter.com/tonyerwin
mailto:jschweik@us.ibm.com

The End

THE
L LINUX
FOUNDATION

