
Migration of an Enterprise UI Microservice System 
from Cloud Foundry to Kubernetes

Tony Erwin, IBM
Jonathan Schweikhart, IBM



Agenda

• Overview of IBM Cloud Console Architecture
• What is Cloud Foundry? What is Kubernetes? Why Switch?
• Experiences And Lessons Learned During Migration
• Conclusion



Overview of IBM Cloud 
Console Architecture



IBM Cloud Console
• Large UI serving as front-end to the IBM Cloud
• Lets users create, view, and manage 

PaaS/IaaS resources:
– Cloud Foundry apps & services
– Kubernetes clusters
– Virtual servers
– Bare metal

• Provides additional functionality for:
– Registration/onboarding
– Identity and Access Management (IAM)
– Billing/usage
– Docs



IBM Cloud Console Architecture
• Started life about 5 

years ago as a 
monolithic Java 
app

• Now composed of 
about 40 Node.js, 
cloud-native 
microservices + 
more than 20 
external plugins

• Originally deployed 
as apps to Cloud 
Foundry

• Currently deployed 
as containers on 
Kubernetes

uService 1 uService 2 … uService nuService n-1

Backend APIs (CF, Containers, VMs, IAM, Billing/Usage, etc.)

Console Client

Proxy
Core Deployment

Watson IoT

Funcs Clusters

Mobile …

(External Plugins)



What is Cloud Foundry? 
What is Kubernetes?

Why Switch?



What is Cloud Foundry*?
• Provides a PaaS with an abstraction at the 
application level
– Developers can focus on code rather than 

underlying infrastructure
• Leverages the Open Service Broker API to 

make it easy to use services from apps
• Manages apps as Diego containers 

(internally)
* Technically describing the Cloud Foundry Application Runtime which is one of the two open source components from the CF Foundation.



What is Kubernetes?
• Abstracts at the container level
• Provides many of the benefits of PaaS with 

the flexibility of IaaS
– Often referred to as IaaS+

• Orchestrates computing, networking, and 
storage infrastructure on behalf of user 
workloads

• Enables portability across infrastructure 
providers



Why Did We Switch?
• Nothing “wrong” with CF 

– Very easy to get apps running, relatively low learning curve, etc.
– Used in some way by at least half of the Fortune 500

• Kubernetes offers several advantages for our use case
– More granular control to better manage our large, complex microservice system
– Dedicated clusters to avoid performance/availability problems from friendly fire

• In fairness, CF can be installed in a dedicated manner as well (even on Kubernetes!)

– Simpler “front door” stack with built-in Ingress proxy to avoid extra network hops
– Private host names

• All apps in CF have public host names, so not possible to have a “private” microservice

– Private networking
• Calls between microservices in CF require going out over the public internet 

– Improved memory and CPU usage (dynamic allocation)
– Ability to run our own services (like Redis)
– Integrated monitoring with Prometheus



Experiences And Lessons 
Learned During Migration



Need to Dockerize

Node 
Application cf push Diego 

Container

Node 
Application helm installDocker 

Image

CF Flow

Kube Flow



Migrating Manifest to Helm

• Helm - Deployment
– Docker image
– CPU & memory
– Environment variables

• Helm – Service
– Single alias for the deployment

• Helm – Ingress
– Hostname/URL mapping to service



Deployment Configuration

• Cloud Foundry
– Configuration per deployment environment

• Kubernetes
– Helm cli makes hierarchical simple
– Global
– Global-<Environment>
– Cluster
– Cluster-<namespace>



Exposure of Microservices

• Cloud Foundry
– Public URL per microservice
– Each microservice has to protect against direct access

• Security concerns
• Common code repeated

• Kubernetes
– Microservice gets to choose exposure

• Service – Allows an internal only route to the application
• Ingress – Allows external routes to be defined to map to Services

– Protections take place at a higher level to allow 
microservices to ignore exposure issues



Common Code Migration Problems

• Cloud Foundry assumptions

– Environment variable assumptions
• VCAP_SERVICES

• PORT

• Invalid OS name characters like hyphens

– URL format for intra-microservice communication
• CF: https://ace-common-production.us-south.bluemix.net

• Kubernetes: http://common

• URL construction vs URL variables

https://ace-common-production.us-south.bluemix.net/
http://common/


Installing a Local Redis with Stateful Sets

Redis
1

Redis
2

Redis
3

Cloud Foundry Kubernetes

Redis
1

Worker Node 1

Redis
2

Worker Node 2

Redis
3

Worker Node 3



Worker Nodes

Kubernetes Cluster

Worker Nodes

cadvisor

Nginx-logger
Prometheus

Monitoring in Kubernetes

Worker Nodes

Kubernetes Cluster

Worker Nodes

cadvisor

Nginx-logger
Prometheus

Worker Nodes

Kubernetes Cluster

Prometheus

• CPU
• Memory
• Network
• File system
• Status

Filter



Monitoring NGINX Ingress
• Nginx logs contain invaluable metrics about incoming calls

– Timestamp
– HTTP method
– HTTP status codes
– Headers
– URI
– Response time

• Implemented custom solution for accessing those metrics
– Configure nginx to log to syslog
– Create microservice that scrapes the syslog and exposes the data 

to Prometheus
– Filter, monitor, and alert



Red/Black Deployments

Live URL Ondeck URL

Red Ingress Black Ingress

Proxy
Ingress

Live URL Ondeck URL

Red Ingress Black Ingress

Proxy
Ingress



Built-in Liveness/Readiness Checks
• /readiness

– ”I am ready to accept traffic”
– One time initialization checks

• Connections to resources (URLs, DBs, etc..)
– Periodic checks

• Circuit breakers
• Current status
• Content Throttling

• /liveness
– “I should keep living“
– Unrecoverable situations/Unexpected Failures
– “Have you tried turning it off and on again?”



Rolling Out Kubernetes



Geo Load Balancing and Failover (CF)

• One global URL 
(https://console.bluemix.net)

• Use Dyn geo load balancing to 
serve UI from the nearest 
healthy region

• If healthcheck in a region shows 
a problem, Dyn routes to the 
next closest healthy region

• Odds of all regions being down 
at the same time much less 
than one region being down

• Reduces regional latency

https://console.bluemix.net/


Geo Load Balancing and Failover (Migration)

• Needed to verify stability 
of Kube clusters before 
turning off CF 
deployments in production

• Solution: Add Kube
clusters to Dyn rotation 
and run CF deployments 
side-by-side with Kube
deployments



Geo Load Balancing and Failover (Final)

• Once satisfied, 
removed CF 
deployments from 
rotation and only 
Kube deployments 
remained



Conclusion



Conclusion

• CF is a great technology, but Kubernetes better 
meets the needs of our microservice system

• Nothing is free, and we had to solve several new 
problems along the way

• Allowed us to achieve greater performance, 
scalability, reliability, and security than we had 
before



Questions?

• Tony Erwin
– Email: aerwin@us.ibm.com
– Twitter: @tonyerwin

• Jonathan Schweikhart
– Email: jschweik@us.ibm.com

mailto:aerwin@us.ibm.com
https://twitter.com/tonyerwin
mailto:jschweik@us.ibm.com


The End


