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So you have a server

You need:
● server SSH key
● configuration management key
● disk encryption key
● some server credentials
● probably more…

… so at least 5 keys… and that’s per server
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Keys in configuration management
#!yaml|gpg

root-password: |
    -----BEGIN PGP MESSAGE-----
    Version: GnuPG v1

    hQIMA221uplZYlMdARAA583Z4o3xZawWzK8yUYJKBEkMQD/i+RRn7A0+h8SEmsov
    QkrxgeaCWfIZ5pRpCpVOK1SWZGi0dzWkWe1DeNisawv5X/VUG3d5ej1xtAD4kBTy
    AzcnFft7QfIsV8C+jguHYGITU++pFVAgEdGrb09mf6SEDaAGJhOq01BmHccw0Pat
    rBH/+gvD155F7sxM/BBQwL25ZjtC+8jUsp1bUcTQVofsy6kTVRNSS4hO4UNtMuMQ
    hYf6UAPaJv3PhFXKYYu0tEp2THZVTlUtTjyKAZrNiKyRpC/0exbJjJMqkYmmUG9r
    yP1CvubJnmHda2u42981dK3pz5TlLEO4MrBry6vynN0TJfXwn1nt7YMVatiViQb9
    UK5NDbjVKBBE6KkN28kSJtsTkCOM7+RztjLdf+7ZWzwxFV5EkM+2SLPIhQFCMjRG
    ...
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Keys in configuration management

● Bootstrap configuration management
● Does not scale for unique keys

#!yaml|gpg

root-password: |
{% if grains[‘hostname’] == ‘baredog’ %}
  -----BEGIN PGP MESSAGE-----
  ...
{% elif grains[‘hostname’] == ‘cheesyonion’ %}
  -----BEGIN PGP MESSAGE-----
  ...
{% elif grains[‘hostname’] == … %}
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Keys on local disk

#!/bin/bash

# super nitty startup script, fully automated !!!

if [ ! -f /etc/server_key ]; then

  dd if=/dev/urandom of=/etc/server_key bs=1 count=32

fi

# don’t forget SSH

if [ ! -f /etc/ssh/id_rsa ]; then

  ssh-keygen -f /etc/ssh/id_rsa

fi

● Usually generated by startup scripts



Entropy
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Keys on local disk

● Not suitable for some key types
○ root passwords

● Does not play well with disk 
encryption
○ decrypt configuration management key

● What about diskless/stateless 
systems?



Encrypted disks

server

disk 1 disk 2 disk N

encryptstore
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● Aka BIOS 2.0
● Standard pre-OS environment
● Extensible (you can write your own apps)
● Supported by most major OSes
● Provides many advanced features

○ UEFI variables
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UEFI variables

● Backed by flash memory on platform 
firmware chip

● Can store standard and custom 
(OEM/user) data

● Can be accessed after OS kernel booted
● Have built-in support in Linux



UEFI variables in Linux
# not needed for systemd-based Linux distributions

mount -t efivarfs efivarfs /sys/firmware/efi/efivars

# need to prepend data with 4 byte attr and put an “owner” GUID

cat <(printf "\x07\x00\x00\x00") <(cat mydata.bin) > \ 
/sys/firmware/efi/efivars/mydata-<some GUID>
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UEFI variables in Linux

● always available
● can be accessed in early boot stages
● however, may have limited storage

# not needed for systemd-based Linux distributions

mount -t efivarfs efivarfs /sys/firmware/efi/efivars

# need to prepend data with 4 byte attr and put an “owner” GUID

cat <(printf "\x07\x00\x00\x00") <(cat mydata.bin) > \ 
/sys/firmware/efi/efivars/mydata-<some GUID>
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Generating key pairs

Deterministic 
CSPRNG

seed1 seed2

keypair1 keypair2
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Introducing gokey tool

HKDFmaster 
seed realm

Deterministic 
CSPRNG

ssh
key

For example 
“ssh”, “saltstack”,
“disk encryption” 

etc

saltstack 
key

Deterministic 
CSPRNG
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Key management

● Provisioning process ensures a master seed is 
generated and stored in UEFI on first boot

● Startup scripts “recover” (derive from master seed) 
configuration management credential (key)

● Configuration management “recovers” all other keys



Key management
root-password: |
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  -----BEGIN PGP MESSAGE-----
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Key management
root-password: |

{% if grains[‘hostname’] == ‘baredog’ %}

  -----BEGIN PGP MESSAGE-----

  ...

{% elif grains[‘hostname’] == ‘cheesyonion’ %}

  -----BEGIN PGP MESSAGE-----

root-password: {% gokey(‘root-password’) %}

ssh-key: {% gokey(‘ssh’) %}
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Rotate a specific service key

server server server

ssh-key: {% gokey(‘ssh’) %} ssh-key: {% gokey(‘ssh-v2’) %}
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Rotate all key on a server

server server server

rotate EFI seed
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Encrypted disks

server

disk 1 disk 2 disk N

encryptencrypt
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management
● Easy to add new or rotate existing keys
● Better security guarantees

https://github.com/cloudflare/gokey



Thank you


