
Managing server secrets at scale
with a vaultless password manager

Ignat Korchagin
@secumod

$ whoami

● Platform engineer at Cloudflare

● Passionate about security and crypto

● Enjoy low level programming

Disclaimer

So you have a server

So you have a server

You need:
● server SSH key

So you have a server

You need:
● server SSH key
● configuration management key

So you have a server

You need:
● server SSH key
● configuration management key
● disk encryption key

So you have a server

You need:
● server SSH key
● configuration management key
● disk encryption key
● some server credentials

So you have a server

You need:
● server SSH key
● configuration management key
● disk encryption key
● some server credentials
● probably more…

So you have a server

You need:
● server SSH key
● configuration management key
● disk encryption key
● some server credentials
● probably more…

… so at least 5 keys… and that’s per server

So you have a datacentre

So you have a datacentre(s)

So you have a datacentre(s)

Cloudflare network today

So you have a datacentre(s)

Where do keys live?

Where do keys live?

Where do keys live?

Keys in configuration management
#!yaml|gpg

root-password: |
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1

 hQIMA221uplZYlMdARAA583Z4o3xZawWzK8yUYJKBEkMQD/i+RRn7A0+h8SEmsov
 QkrxgeaCWfIZ5pRpCpVOK1SWZGi0dzWkWe1DeNisawv5X/VUG3d5ej1xtAD4kBTy
 AzcnFft7QfIsV8C+jguHYGITU++pFVAgEdGrb09mf6SEDaAGJhOq01BmHccw0Pat
 rBH/+gvD155F7sxM/BBQwL25ZjtC+8jUsp1bUcTQVofsy6kTVRNSS4hO4UNtMuMQ
 hYf6UAPaJv3PhFXKYYu0tEp2THZVTlUtTjyKAZrNiKyRpC/0exbJjJMqkYmmUG9r
 yP1CvubJnmHda2u42981dK3pz5TlLEO4MrBry6vynN0TJfXwn1nt7YMVatiViQb9
 UK5NDbjVKBBE6KkN28kSJtsTkCOM7+RztjLdf+7ZWzwxFV5EkM+2SLPIhQFCMjRG
 ...

Keys in configuration management

Keys in configuration management

● Bootstrap configuration management

Keys in configuration management

● Bootstrap configuration management
● Does not scale for unique keys

Keys in configuration management

● Bootstrap configuration management
● Does not scale for unique keys

#!yaml|gpg

root-password: |
{% if grains[‘hostname’] == ‘baredog’ %}
 -----BEGIN PGP MESSAGE-----
 ...
{% elif grains[‘hostname’] == ‘cheesyonion’ %}
 -----BEGIN PGP MESSAGE-----
 ...
{% elif grains[‘hostname’] == … %}

Keys on local disk

Keys on local disk

#!/bin/bash

super nitty startup script, fully automated !!!

if [! -f /etc/server_key]; then

 dd if=/dev/urandom of=/etc/server_key bs=1 count=32

fi

don’t forget SSH

if [! -f /etc/ssh/id_rsa]; then

 ssh-keygen -f /etc/ssh/id_rsa

fi

● Usually generated by startup scripts

Entropy

Keys on local disk

Keys on local disk

● Not suitable for some key types

Keys on local disk

● Not suitable for some key types
○ root passwords

Keys on local disk

● Not suitable for some key types
○ root passwords

● Does not play well with disk
encryption

Keys on local disk

● Not suitable for some key types
○ root passwords

● Does not play well with disk
encryption
○ decrypt configuration management key

Keys on local disk

● Not suitable for some key types
○ root passwords

● Does not play well with disk
encryption
○ decrypt configuration management key

● What about diskless/stateless
systems?

Encrypted disks

server

disk 1 disk 2 disk N

encryptstore

Unified Extensible Firmware Interface

Unified Extensible Firmware Interface

● Aka BIOS 2.0

Unified Extensible Firmware Interface

● Aka BIOS 2.0
● Standard pre-OS environment

Unified Extensible Firmware Interface

● Aka BIOS 2.0
● Standard pre-OS environment
● Extensible (you can write your own apps)

Unified Extensible Firmware Interface

● Aka BIOS 2.0
● Standard pre-OS environment
● Extensible (you can write your own apps)
● Supported by most major OSes

Unified Extensible Firmware Interface

● Aka BIOS 2.0
● Standard pre-OS environment
● Extensible (you can write your own apps)
● Supported by most major OSes
● Provides many advanced features

Unified Extensible Firmware Interface

● Aka BIOS 2.0
● Standard pre-OS environment
● Extensible (you can write your own apps)
● Supported by most major OSes
● Provides many advanced features

○ UEFI variables

UEFI variables

● Backed by flash memory on platform
firmware chip

UEFI variables

● Backed by flash memory on platform
firmware chip

● Can store standard and custom
(OEM/user) data

UEFI variables

● Backed by flash memory on platform
firmware chip

● Can store standard and custom
(OEM/user) data

● Can be accessed after OS kernel booted

UEFI variables

● Backed by flash memory on platform
firmware chip

● Can store standard and custom
(OEM/user) data

● Can be accessed after OS kernel booted
● Have built-in support in Linux

UEFI variables in Linux
not needed for systemd-based Linux distributions

mount -t efivarfs efivarfs /sys/firmware/efi/efivars

need to prepend data with 4 byte attr and put an “owner” GUID

cat <(printf "\x07\x00\x00\x00") <(cat mydata.bin) > \
/sys/firmware/efi/efivars/mydata-<some GUID>

UEFI variables in Linux

● always available

not needed for systemd-based Linux distributions

mount -t efivarfs efivarfs /sys/firmware/efi/efivars

need to prepend data with 4 byte attr and put an “owner” GUID

cat <(printf "\x07\x00\x00\x00") <(cat mydata.bin) > \
/sys/firmware/efi/efivars/mydata-<some GUID>

UEFI variables in Linux

● always available
● can be accessed in early boot stages

not needed for systemd-based Linux distributions

mount -t efivarfs efivarfs /sys/firmware/efi/efivars

need to prepend data with 4 byte attr and put an “owner” GUID

cat <(printf "\x07\x00\x00\x00") <(cat mydata.bin) > \
/sys/firmware/efi/efivars/mydata-<some GUID>

UEFI variables in Linux

● always available
● can be accessed in early boot stages
● however, may have limited storage

not needed for systemd-based Linux distributions

mount -t efivarfs efivarfs /sys/firmware/efi/efivars

need to prepend data with 4 byte attr and put an “owner” GUID

cat <(printf "\x07\x00\x00\x00") <(cat mydata.bin) > \
/sys/firmware/efi/efivars/mydata-<some GUID>

Keys in cryptography

Keys in cryptography

derive

Keys in cryptography

Key derivation functions
master

key

KDF

Key derivation functions
master

key

KDF

Key derivation functions
master

key

KDF

string1

Key derivation functions
master

key

KDF

string1

key1

Key derivation functions
master

key

KDF

string1 string2

key1

Key derivation functions
master

key

KDF

string1 string2

key1 key2

Generating key pairs

Deterministic
CSPRNG

Generating key pairs

Deterministic
CSPRNG

seed1

Generating key pairs

Deterministic
CSPRNG

seed1

keypair1

Generating key pairs

Deterministic
CSPRNG

seed1 seed2

keypair1

Generating key pairs

Deterministic
CSPRNG

seed1 seed2

keypair1 keypair2

Introducing gokey tool

master
seed realm

For example
“ssh”, “saltstack”,
“disk encryption”

etc

Introducing gokey tool

HKDFmaster
seed realm

For example
“ssh”, “saltstack”,
“disk encryption”

etc

Introducing gokey tool

HKDFmaster
seed realm

Deterministic
CSPRNG

For example
“ssh”, “saltstack”,
“disk encryption”

etc

Introducing gokey tool

HKDFmaster
seed realm

Deterministic
CSPRNG

ssh
key

For example
“ssh”, “saltstack”,
“disk encryption”

etc

Introducing gokey tool

HKDFmaster
seed realm

Deterministic
CSPRNG

ssh
key

For example
“ssh”, “saltstack”,
“disk encryption”

etc
Deterministic

CSPRNG

Introducing gokey tool

HKDFmaster
seed realm

Deterministic
CSPRNG

ssh
key

For example
“ssh”, “saltstack”,
“disk encryption”

etc

saltstack
key

Deterministic
CSPRNG

Key management

● Provisioning process ensures a master seed is
generated and stored in UEFI on first boot

Key management

● Provisioning process ensures a master seed is
generated and stored in UEFI on first boot

● Startup scripts “recover” (derive from master seed)
configuration management credential (key)

Key management

● Provisioning process ensures a master seed is
generated and stored in UEFI on first boot

● Startup scripts “recover” (derive from master seed)
configuration management credential (key)

● Configuration management “recovers” all other keys

Key management
root-password: |

{% if grains[‘hostname’] == ‘baredog’ %}

 -----BEGIN PGP MESSAGE-----

 ...

{% elif grains[‘hostname’] == ‘cheesyonion’ %}

 -----BEGIN PGP MESSAGE-----

Key management
root-password: |

{% if grains[‘hostname’] == ‘baredog’ %}

 -----BEGIN PGP MESSAGE-----

 ...

{% elif grains[‘hostname’] == ‘cheesyonion’ %}

 -----BEGIN PGP MESSAGE-----

root-password: {% gokey(‘root-password’) %}

ssh-key: {% gokey(‘ssh’) %}

Adding a service key

server server

Adding a service key

server server

my-service-key: {% gokey(‘my-service-key’) %}

Adding a service key

server server

my-service-key: {% gokey(‘my-service-key’) %}

Adding a server

server server

Adding a server

server server server

Adding a server

server server server

Rotate a specific service key

server server server

Rotate a specific service key

server server server

ssh-key: {% gokey(‘ssh’) %} ssh-key: {% gokey(‘ssh-v2’) %}

Rotate a specific service key

server server server

ssh-key: {% gokey(‘ssh’) %} ssh-key: {% gokey(‘ssh-v2’) %}

Rotate all key on a server

server server server

Rotate all key on a server

server server server

rotate EFI seed

Rotate all key on a server

server server server

rotate EFI seed

Encrypted disks (previously)

server

disk 1 disk 2 disk N

encryptstore

Encrypted disks

server

disk 1 disk 2 disk N

encryptencrypt

Conclusions

Conclusions
● Decouple key storage from regular storage

Conclusions
● Decouple key storage from regular storage
● Decouple key contents from key

management

Conclusions
● Decouple key storage from regular storage
● Decouple key contents from key

management
● Easy to add new or rotate existing keys

Conclusions
● Decouple key storage from regular storage
● Decouple key contents from key

management
● Easy to add new or rotate existing keys
● Better security guarantees

Conclusions
● Decouple key storage from regular storage
● Decouple key contents from key

management
● Easy to add new or rotate existing keys
● Better security guarantees

https://github.com/cloudflare/gokey

Thank you

