Machine Learning for Cl

Kyra Wulffert
kwulffert@yahoo.com

Matthew Treinish
mtreinish@kortar.org

Andrea Frittoli
andrea.frittoli@gmail.com

August 29, 2018

https://github.com/afrittoli/ciml _talk L JLiNux

mailto:kwulffert@yahoo.com
mailto:mtreinish@kortar.org
mailto:andrea.frittoli@gmail.com
https://github.com/afrittoli/ciml_talk

Cl at Scale

167 Number of Tests run Daily
20- — Daily Test Count
" —— Avg. Daily Test Count
Std Dev
g 13- . .
8 » Continuous Integration
2 10 » Continuous Log Data
Q
§ » Lots of data, little time
0.5 - . .
» Triaging failures?
» Al to the rescuel!

0.0 -

Source: subunit2sql-graph dailycount

CODE .

The OpenStack use case

> Integration testing in a VM
» System logs, application logs
» Dstat data
> Gate testing
» Not only OpenStack
Normalized system average load for different examples
CODE

2/30

Collecting data

v

Automation and repeatability

f

—al i
Fetch and Validate Raw Data (Local/53)
|7

v

Light-weight data validation

v

Object storage for data
Periodic Action on OpenWhisk

v

Data caching diagram

CODE

3/30

Experiment Workflow

Build an s3 backed dataset
ciml—build —dataset —dataset cpu—load —lmin—dataset \
——build —name tempest—full \
——slicer :2000 \
——sample—interval 10min \
——features—regex "(usr|[lmin)" \
——class—label status \

> Visualize data :;i;:s;i; 23:0/?ci\m|rawdata \

> Define a dataset ——target —data—path s3://cimldatasets
» Define an experiment

» Run the training

» Collect results a

>

Visualize data ? 7 T

Normalize

Dataset preparation diagram

CODE

4/30

Experiment Workflow

Visualize data

v

Define a dataset

v

v

Define an experiment

v

Run the training

Collect results

v

Visualize data

v

CODE

#

Define a local experiment

ciml—setup—experiment —experiment dnn—5x100 \

#
#

——dataset cpu—load —1lmin—dataset \
——estimator tf.estimator. DNNClassifier \
——hidden—layers 100/100/100/100/100 \
——steps $((2000 / 128 x 500)) \
——batch—size 128 \

——epochs 500 \

——data—path s3://cimldatasets

Train the model based on the dataset and experiment
Store the evaluation metrics as a JSON file

ciml—train —model —dataset cpu—load —1lmin—dataset \

——experiment dnn—5x100 \
——data—path s3://cimldatasets

5/30

Training Infrastructure

£ PYTORCH

o
‘fc’—"ez Caffe [Keras

FfDL Architecture - Source:
https://developer.ibm.com/code/

CODE

v

v

v

v

TensorFlow Estimator API

CIML wrapper

ML framework interchangable
Training Options:

>

>
>
>

Run on a local machine

Helm deploy CIML, run in containers

Submit training jobs to Ffdl
Kubeflow

6/30

https://developer.ibm.com/code/2018/03/20/democratize-ai-with-fabric-for-deep-learning/l

Prediction

Event driven: near real time

v

v

No request to serve the prediction to
MQTT Trigger from the Cl system
CIML produces the prediction

v

v

v

Trusted Source: Continuous Training

CODE

» CIML kubernetes app components:

>

>

MQTT Client receives events
Data module fetches and prepares
data

TensorFlow wrapper issues the
prediction

Example: comment back on
Gerrit/Github

7/30

Data Selection

» What is dstat data

» Experiment reproducibility

» Dataset selection

CODE

» Dstat feature selection
» Data resolution (down-sampling)

Sample of dstat data

time usr

used

writ

Im

16/03/2018 21:44 ~ 7.45 7.43~10! 36-10° 0.97

16/03/2018 21:44 427 7.31-10°

16/03/2018 21:44 1
16/03/2018 21:44 0.5

7.43-108
7.44 108

16/03/2018 21:44 0.88 7.43-10°
16/03/2018 21:44 139 7.31-108
16/03/2018 21:45 1.01 7.4 - 108
16/03/2018 21:45 0.75 7.46 - 10°

16/03/2018 21:45 1.13 7.44- 10
16/03/2018 21:45 5.77 7.77- 108
16/03/2018 21:45 9.85 8.31-10°
16/03/2018 21:45 3.88 8.46 - 10°

4.01-10°
4,096
1.5-107

4,096
4.51-10°
4,096
61,440

4,006
1.72-10°
4.99-10°
8.25 - 107

0.97
0.97
0.97

0.9
0.9
0.9
0.9

0.82
0.82
0.82
0.82

8/30

Data Normalization

» Unrolling

Sample of unrolled data

usrl wusr2 usr3 1Iml 1m2 1m3

6.1 175 126 097 097 0.9
59 15 31 09 092 097
58 176 22 0.89 091 094

CODE

» Normalizing

Sample of normalized data

usrl usr2 usr3 1ml 1Im2 1m3

0.6 03 -05 06 06 0.5
-01 -07 05 -03 -02 05
—-0.4 03 0 —-04 04 0

9/30

Building the dataset

DATASET

LABELS

TRAINING Classes

v

Split in training, dev, test

v

Obtain classes

O TRAINING

Y

» Store normalized data on s3
TUNING
DEV Classes . ..
C »| = » Input function for training
EVALUATION
> lasses . .
@ i d » Input function for evaluation

Structure of a dataset

CODE

10/30

DNN - Binary Classification

v

v

v

v

v

CODE

>

>

>

>

vV vy vy VvVYyy

Classes: Passed or Failed
Supervised training

TensorFlow DNNClassifier, classes=2
Dataset:

Cl Job "tempest-full"

Gate pipeline only

2000 examples, 1400 training, 600
test

Hyper-parameters:

Activation function: RelLU

Output layer: Sigmoid

Optimizer: Adagrad

Learning rate (initial): 0.05

5 hidden layers, 100 units per layer
Batch Size: 128, Epochs: 500

Network Graph - Source: TensorBoard

11/30

DNN - Binary Classification

v

Selecting the best feature set

v

Primary metric: accuracy

v

Aim for lower loss, caveat: overfitting
> Key:

usr: User CPU

used: Used Memory

1m: System Load - 1min Average
Data Resolution: 1min

Source: TensorFlow evaluation

vV vy vy VvYy

v

Winner: (usr, 1m) tuple
Accuracy achieved: 0.995
3 mistakes on a 600 test set

CODE

v

v

0.025

0.020 4

0.015 4

0.010 4

0.001

(1 - Accuracy) with different features

0
usrjused/lm usr/lm usr/used usr used

Loss with different features

m

04
usrjused/im usr/im usrjused usr used

m

12/30

DNN - Binary Classification

(

=

- Accuracy) with different resolution

» Selecting the data resolution

0.0150

» Primary metric: accuracy

0.0125

» Aim for lower loss, caveat: overfitting
» Note: careful with NaN after
down-sampling

> Key 105 305 1min smin 10min
» Original data frequency: 1s
> X-axis: new samp“ng rate Loss with different resolution
> Features: (usr, 1m)
» Source: TensorFlow evaluation

» Winner: 1min

» Accuracy achieved: 0.995

3 mistakes on a 600 test set

CODE

v

10s 305 1min smin 10min

13/30

Changing test job

metric tempest-full tempest-full-py3
accuracy 0.997 0.943
loss 65.497 242.369
auc_ precision _ recall 0.965 0.608

CODE

» Train with "tempest-full"
» Evaluating with "tempest-full-py3"
» Similar setup, uses python3
» It does not include swift and swift
tests
» 600 examples evaluation set
» Dataset and training setup:
» Features: (usr, 1m)
» Resolution: 1min
» Same hyper-parameters

14/30

Binary Classification - Summary

» User CPU and 1min Load Avg

» Resolution: 1 minute is
enough

» High accuracy: 0.995

» High auc_ precision _recall:
0.945

» A trained model might be
applicable to similar CI jobs

Training Loss - usr/1m, 1min - Source: TensorBoard

CODE

15/30

DNN - Multi Class

v

v

v

v

v

CODE

>

>

>

>

vV vy vy VvVYyy

Classes: Hosting Cloud Provider
Supervised training

TensorFlow DNNClassifier, classes=9

Dataset:

Cl Job "tempest-full"

Gate pipeline only

2000 examples, 1400 training, 600
test

Hyper-parameters:

Activation function: RelLU

Output layer: Sigmoid

Optimizer: Adagrad

Learning rate (initial): 0.05

5 hidden layers, 100 units per layer
Batch Size: 128, Epochs: 500

Network Graph - Source: TensorBoard

16 /30

DNN - Multi Class

» Features: (usr, 1m)
» Resolution: 1min
» Loss converges, but...
» Evaluation accuracy achieved:
0.668
» Not good!
Training Loss - usr/1m, 1min - Source: TensorBoard
CODE

17/30

Multi Class - Different Features

» Try different combinations of features
» Primary metric: accuracy

» Aim for lower loss, caveat: overfitting
> Key:

usr: User CPU

used: Used Memory

Im: System Load - 1min Average
Data Resolution: 1min

Source: TensorFlow evaluation
output

vV vy vy VvYyy

» No real improvement
» Best accuracy achieved: 0.668

» Adding Disk 1/O or process data does
not help either

CODE

2000 4

1000 o

04
usrjused/im usr/im usrjused usr use

(1 - Accuracy) with different features

o
usrjused/lm usr/lm usr/used usr usc

Loss with different features

m

m

18 /30

Multi Class - Changing Resolution

v

v

v

> Key:

v

v

CODE

>
>
>
>

Trying to change the data resolution
Primary metric: accuracy
Aim for lower loss, caveat: overfitting

Original data frequency: 1s
x-axis: new sampling rate
Features: (usr, 1m)

Source: TensorFlow evaluation

No real improvement

Best accuracy achieved: 0.668

(

=

- Accuracy) with different resolution

305 1min smin 10min

Loss with different resolution

305 1min smin 10min

19 /30

Multi Class - Network topology

» Trying to change the network depth

» Trying to change number of units per
layer

» Primary metric: accuracy

» Aim for lower loss, caveat: overfitting
Key:

x-axis: units and hidden layers

Features: (usr, 1m)

Resolution: 1min
Source: TensorFlow evaluation

v v vYyy

» No real improvement

» Best accuracy achieved: 0.668

CODE

(1 - Accuracy) with different network topologies

dnn 5x100 dnn 3x100 dnn 5x500 dnn 10x100 dnn 3x10

Loss with different network topologies

04
dnn-5x100 dNn-3x100 dNN-5x500 dNN-10X100 dnn-3x10

20/30

Multi Class - Reducing the number of classes

v

Reducing the number of classes

» Different regions from a Cloud
Operator

> Consider as a single class

> New number of classes is 6

v

Experiments:
» Train with different feature sets
» Train with different resolutions
» Source: TensorFlow evaluation

v

Significant improvement!

v

Best accuracy achieved: 0.902
What does that mean?

v

CODE

(-

=Nl Classes

o
usr/used/1m usr/:

== Grouped Classes

Accuracy) with different features

1m usrjuscd usr used m

Loss with different resolution

= All Classes

== Grouped Classes

305 1min smin 10min

21/30

Multi Class - Tuning network topology

(1 - Accuracy) with different network topologies

» Tuning network topology
» Experiments:
» x-axis: units and hidden layers O 5100 ann 31100 ann 31500 ann 10x100 ann 310

> Features: (usr, 1m)
> Resolution: 1min

Loss with different network topologies

» Some improvement
Winner: 3x100. Accuracy: 0.925 =

v

04
dnn-5x100 dNn-3x100 dNN-5x500 dNN-10X100 dnn-3x10

CODE

22/30

Multi Class - Changing test job

metric tempest-full tempest-full-py3
accuracy 0.925 0.775
average loss 0.978 3.271
loss 586.713 1,962.447
CODE

» Train with "tempest-full"
» Evaluating with "tempest-full-py3"

» Similar setup, uses python3

» It does not include swift and swift
tests

» 600 examples evaluation set

» Dataset and training setup:

» Features: (usr, 1m)
» Resolution: 1min
» Same hyper-parameters (dnn-3x100)

23/30

Multi Class - Summary

» User CPU and 1min Load Avg

» Resolution: 1 minute is
enough

» Hyperparameters: 3 hidden
layers, 100 units each

» Reasonable accuracy: 0.925

» A trained model is not

applicable to similar CI jobs
Training Loss - usr/1m, 1min, dnn3x100 - Source: TensorBoard

CODE

24/30

Conclusions

v

Summary on DNN binary classification

v

Summary on DNN multi class
Collect data

v

v

Know your data
Work with cloud tools

v

CODE

25 /30

Future Work

v

Complete setup of the pipeline

v

Human curated dataset for supervised training

v

Making our life easier

v

Integrate with real life Cl system

v

Explore job portability

CODE

26 /30

References

» This talk: https://github.com/afrittoli/ciml _talk
» CIML:https://github.com/mtreinish/ciml

CODE

27/30

https://github.com/afrittoli/ciml_talk
https://github.com/mtreinish/ciml

Thank youl
Questions?

CODE

HOW WOULD

22 MILLION
DEVELOPERS SOLVE
THESE GLOBAL
ISSUES IF GIVEN A
CHANCE TO ANSWER
THE CALL?

FIND OUT HOW AT
developer.ibm.com/callforcode

e
[Jom]|
IHIH]
ol
||||||||

A
o
R
<

R
2

P,
o

4

5
2%

@ REGISTER
FOR THE
CHALLENGE

callforcode.org/oss

Learn about the
competition scope,
prizes, rules and
schedule

@ SIGN UP FOR
AN IBM
ACCOUNT

ibm.biz/engagewith
developer

Get an account
granting free tier
access for an
unlimited time

@ START
BUILDING
WITH CODE

developer.ibm.com/
callforcode

Use code patterns in
six tech areas to
inspire your
submission

®
&7

@ ENGAGE THE
COMMUNITY

Through the IBM Coder
community and Slack
Meet advocates,
brainstorm ideas,
find a team, hear
about updates

Start solving the world's largest natural
disaster challenges through code

L 4
4

® suBMIT
YOUR
SOLUTION

ibm.biz/callforcodesubmit

Describe your app,
name your team,
link to your code
and demo

	Context
	Infrastructure
	Data
	Experiments
	Conclusions
	Questions

	anm0:

