
Android Kernel
Security

Linux
Security Summit

Aug 2018

Jeff Vander Stoep and Sami Tolvanen

Acknowledgements
People who have reported security vulnerabilities to Android security:
https://source.android.com/security/overview/acknowledgements

Android SDL team
Evgenii Stepanov

Ivan Lozano
Joel Galenson

Vishwath Mohan

2

This data is
public

https://source.android.com/security/bulletin/

Data: Sep 2017 → May 2018 3

Android is an open
source project

Patches accepted!

4

Kernel vulns in Android

Data: Sep 2017 → May 2018 (Android Oreo)

Kernel accounts for ⅓ of security vulnerabilities on Android.

5

What’s working well:
Attack Surface Reduction

6

“We think that by far the most effective mitigation work that
we’ve seen on the Android platform over the last three

years has been the investment in attack surface reduction.
The deployment and tightening of selinux policies and the
addition of seccomp sandboxing both result in an attacker

needing to find more vulnerabilities in a smaller attack
surface.”

Mark Brand - Google Project Zero

7

Access controls are
“hard” mitigations which
can be applied without

knowledge of exploitation
techniques.

8

Attack surface reduction

Data: Sep 2017 → May 2018 (Android Oreo)

Kernel vulnerabilities that are reachable in userspace but
unreachable by unprivileged processes.

(su → kernel vulns are excluded)

9

Unprivileged Access
Access Restricted

SELinux

e.g. CVE-2018-5858

Access control mechanism
Unix Permissions

e.g. CVE-2017-14892

Capabilities

e.g. CVE-2017-17712

10

Unprivileged Access
Privileged Access(userspace reachable)

Sep 2017 → Apr 2018

Starting in Android Oreo
all apps run with a

seccomp filter.
e.g. Blocks CVE-2017-14140

11

Access control is effective
Attack surface
reduction works!

Kernel provided access
control + separation of
privilege can substantially
mitigate risks to the kernel.

12

Unprivileged reachable bugs

(userspace reachable)
Sep 2017 → Apr 2018

Some futex() and
meltdown vulns.

13

Other userspace → kernel
mitigations

14

Hardened Usercopy
Provides some run-time
checks on data copied
to/from userspace

copy_*_user()

15

Vulnerabilities by root cause
(userspace reachable)

Sep 2017 → Apr 2018

PAN

Prevents direct kernel access to userspace.

Enforces use of (hardened) copy_*_user functions.

Found/fixed multiple instances of kernel directly accessing userspace.

16

Unfortunately, not all kernel
vulns are reached via

userspace.

17

Kernel vuln reachability

Data: Sep 2017 → May 2018

Userspace
Reachable
Not Userspace
Reachable

We’ve been
discussing this.

But what about this ?!?!

18

Non-userspace reachable vulns

Data: Sep 2017 → May 2018

By access
vector

By root
cause

KRACK

19

Summary Userspace → kernel
(a) The attack surface reduction tools provided by the kernel
have been very effective on Android.

(b) In addition to attack surface reduction, the kernel now
provides mechanisms such as hardened-usercopy + PAN
which mitigate some userspace-reachable vulnerabilities.

(c) However, 1/3 of Android’s kernel bugs are reached by
other vectors. We need tools similar to (a) and (b) to help
address other access vectors.

20

Memory (un)safety

All kernel bugs
Data: May 2017 → May 2018

21

Control Flow Integrity

22

Control Flow Integrity

What?

Helps protect
against code reuse
attacks by adding
runtime checks to
ensure control flow
stays within a
precomputed graph.

Where?

LLVM ≥ 3.7
implements
forward-edge CFI,
which protects
indirect branches.

How?

Allows an indirect
branch only to the
beginning of a
valid function with
the correct type.

23

How effective is CFI?

55% of indirect calls have ≤ 5 allowed targets

7% have > 100 allowed targets

24

Link Time Optimization

LLVM’s CFI implementation requires LTO to determine all valid call
targets.

Must use LLVM’s integrated assembler for inline assembly and an
LTO-aware linker, i.e. GNU gold or LLVM lld.

Nearly all problems caused by toolchain compatibility issues. No
kernel stability issues during several months of testing.

25

Link Time Optimization

.S.c.c

.o.bc.bc

Front-end Linker

Thin archive

Optimizer

Code generation

vmlinux

Combined bitcode

26

First Android devices with
LTO+CFI kernels ship

later this year.

27

CFI in the Linux kernel

C compilers allow indirect calls with mismatching types. Several
benign CFI failures that had to be fixed.

Cross-DSO CFI support needed for kernel modules.

CFI adds a small overhead to indirect calls. Thanks to LTO, overall
performance improved despite CFI.

28

Example of a CFI failure

Mismatching function
pointer type

LLVM limits indirect calls to
functions that match the type
of the function pointer.

drivers/media/v4l2-core/v4l2-ioctl.c:

if (info->flags & INFO_FL_STD) {
typedef int (*vidioc_op)(struct file *file, void *fh,

 void *p);
const void *p = vfd->ioctl_ops;
const vidioc_op *vidioc = p + info->u.offset;

ret = (*vidioc)(file, fh, arg);
}

Fixed in 3ad3b7a2ebaefae3 (“media: v4l2-ioctl: replace
IOCTL_INFO_STD with stub functions”)

29

Example cont’d

CFI check, slowpath for
cross-DSO. Only returns if
the target address is
allowed.

Indirect function call.

30

Example cont’d

Error handling

In normal mode, CFI failure results in a
kernel panic, which includes the target
address.

For debugging only, a permissive mode
that produces a warning instead.

CFI failure (target: [<fffffff3e83d4d80>]
 my_target_function+0x0/0xd80):
------------[cut here]------------
kernel BUG at kernel/cfi.c:32!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
…
Call trace:
…
[<ffffff8752d00084>] handle_cfi_failure+0x20/0x28
[<ffffff8752d00268>] my_buggy_function+0x0/0x10
…

31

CFI in Android kernels

Supported in 4.9 and 4.14 for arm64

CONFIG_LTO_CLANG=y
CONFIG_CFI_CLANG=y

CONFIG_CFI_PERMISSIVE=y for debugging.

Requires clang ≥ 5.0 and binutils ≥ 2.27.

32

Future work

CFI only protects indirect branches. LLVM’s Shadow Call Stack helps
protect return addresses.

Plenty of issues with GNU gold. Ongoing work to switch to LLVM’s lld
linker instead.

33

Thank you

