KubeVirt
Cats and Dogs Living Together?

Stephen Gordon

@xsgordon / sgordon@redhat.com
The Story So far...

...for Virtualization in a cloud-native world:

- I need a place to install, run, and manage my Kubernetes clusters.
The Story So far...

...for Virtualization in a cloud-native world:

- I need a place to install, run, and manage my Kubernetes clusters.

 => OpenStack, oVirt, VMware, AWS, GCE, Azure, etc.
...for Virtualization in a cloud-native world:

- I need a place to install, run, and manage my Kubernetes clusters.

 => OpenStack, oVirt, VMware, AWS, GCE, Azure, etc.

- I need a way to provide strict isolation of my application containers.
...for Virtualization in a cloud-native world:

- I need a place to install, run, and manage my Kubernetes clusters.
 => OpenStack, oVirt, VMware, AWS, GCE, Azure, etc.
- I need a way to provide strict isolation of my application containers.
 => Katacontainers, gVisor
What about existing workloads?

VIRTUALIZED WORKLOADS
Virtualized Workloads are not going anywhere fast! Business reasons and technical reasons.
What about existing workloads?

VIRTUALIZED WORKLOADS
Virtualized Workloads are not going anywhere fast! Business reasons and technical reasons.

CONTAINER INFRASTRUCTURE AND ORCHESTRATION
Linux Containers with Kubernetes orchestration are becoming the standard platform for new applications.
What about existing workloads?

VIRTUALIZED WORKLOADS
Virtualized Workloads are not going anywhere fast! Business reasons and technical reasons (older/different operating system)

CONTAINER INFRASTRUCTURE AND ORCHESTRATION
Linux Containers with Kubernetes orchestration are becoming the standard platform for new applications.

COMPLEX APPLICATIONS
As this transition occurs, complex applications will increasingly be made up of both containers and virtual machines. How can we bring these two worlds closer together?
Linux Virtualization Stack

QEMU Processes

Hmm... processes you say?
Enter KubeVirt
What is KubeVirt?

Technology enabling developer use of Kubernetes as a unified platform for building, modifying, and deploying applications residing in both containers and virtual machines in a common, shared environment.

Add virtual machines to your Kubernetes/OpenShift projects just as easily as application containers!
What is KubeVirt?

- Drops directly into existing Kubernetes Clusters.
- Takes as K8S-native an approach as possible.
- Leverage Container Networking Interface (CNI), Container Storage Interface (CSI), and other K8S-native integrations.
- Apache License, Version 2.0

http://kubevirt.io
Together at last!

Resultant virtual machines are able to run side by side directly on the same Kubernetes nodes as application containers.
Example Use Case
Example Use Case: We have a VM!
Example Use Case: Import

Import Using V2V or from an image.
Example Use Case: New Functionality
Example Use Case: Decomposition
Let’s keep digging...
Components

KubeVirt
The virtual machine operator

Containerized Data Importer (CDI)
Importing disks

CSI/Ember
Leverage 80+ existing storage drivers

Virt-v2v (APB)
Importing a whole virtual machine

OpenShift Web Console (Optional)
With UI extensions
Custom Resource Definitions

- Build on Kubernetes, adding new API-level resources.
- Declarative when paired with a controller.

```bash
kubectl get crds
NAME                                      AGE
datavolumes.cdi.kubevirt.io               5m
virtualmachineinstancepresets.kubevirt.io 5m
virtualmachineinstancereplicaset.kubevirt.io 5m
virtualmachineinstances.kubevirt.io       5m
virtualmachines.kubevirt.io               5m
```
Virtual Machine Operator and API

- Virtual Machines have their own kind
 - Ability to express all common virtual machine parameters and actions
 - Targeted feature set is comparable to libvirt

```yaml
apiVersion: kubevirt.io/v1alpha1
kind: VirtualMachine
metadata:
  name: vm-fedora
spec:
  domain:
    devices:
      disks:
        ...
    resources:
      requests:
        memory: 1024M
    volumes:
      ...
status:
  interfaces:
    - ipAddress: 172.17.0.12
  nodeName: localhost
  phase: Running
```
Scheduling

- Virtual Machines are scheduled as pods
 - Same set of features (affinity/anti-affinity, labels and selectors, taints and tolerations)
 - Custom scheduler as needed

- Applications within virtual machines are exported using Service and Routes
 - Selection using labels and selectors
Virtual Machines and Pods

- Virtual Machines live in pods
 - Transparent to higher-level management systems (monitoring, metrics, ...)
 - Technically: Not worse than today

- Virtual Machines leverage pods
 - Metadata - Labels and annotations, passed through and additional
 - CPU and memory resources
 - Affinity and anti-affinity
 - Storage and network

- Virtual Machines specifics
 - Specific events
Disks - Import and Storage

- Virtual Machine disks are mapped to and stored on `PersistentVolumes`
 - 1:1 mapping of disk to PV - Alignment with Kubernetes concepts
 - Mutable and immutable
 - Benefit from the Kubernetes/OpenShift ecosystem and thus indirectly from OpenStack Cinder and its own ecosystem
Import using CDI

- Disk images can be imported using containerized-data-importer
- Declarative Kubernetes utility
- Controller watches for importer specific claims
- Use cases
 - Fetch disks via HTTP
 - Copy images from read-only Kubernetes namespace
Import using virt-v2v

- Virtual Machines can be imported into KubeVirt using **virt-v2v**
 - From VMware, libvirt, and ova
- Limitations
 - Single NIC
 - Single attached disk
Network Connectivity

- Virtual Machine are connected to the regular pod network
 - From the outside there is no difference between a VM and pod

- Applications within virtual machines are exported using Service and Routes
 - Selection using labels and selectors

- Advanced networking (SR-IOC, L2, infiniband, ...) is under discussion in upstream Kubernetes
Demo
Pre-requisites:

- `kubectl`
- `minikube/minishift`

NB: Yes, we’re running nested virt here - fine for getting started!
Future Plans

- Production Workloads
- Embrace the Platform
- Supportability!
Collaborating

- Website:
 - https://kubevirt.io
- GitHub:
 - https://github.com/kubevirt/
- Mailing List:
 - https://groups.google.com/forum/#!forum/kubevirt-dev
- IRC:
 - #kubevirt on irc.freenode.net
- Slack (K8S virtualization working group):
 - #virtualization on kubernetes.slack.com